期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
灰狼算法优化支持向量机在风力机齿轮箱故障诊断中的应用 被引量:16
1
作者 胡璇 李春 叶柯华 《机械强度》 CAS CSCD 北大核心 2021年第5期1026-1034,共9页
针对风力机齿轮箱振动信号非线性和非平稳性的特征,提出基于模糊熵(Fuzzy Entropy,FE)和灰狼算法优化(Grey Wolf Optimizer,GWO)的支持向量机(GWO Support Vector Machine,GWO-SVM)的故障诊断方法。通过集合经验模态分解算法(Ensemble E... 针对风力机齿轮箱振动信号非线性和非平稳性的特征,提出基于模糊熵(Fuzzy Entropy,FE)和灰狼算法优化(Grey Wolf Optimizer,GWO)的支持向量机(GWO Support Vector Machine,GWO-SVM)的故障诊断方法。通过集合经验模态分解算法(Ensemble Empirical Mode Decomposition,EEMD)对振动信号进行分解得到若干本征模态函数(Intrinsic Mode Function,IMF)分量;求取各状态IMF分量的模糊熵并构建特征向量;将各特征向量输入GWO-SVM模型进行故障识别及分类。结果表明:齿轮箱振动信号不同状态下的模糊熵有一定区分度,通过GWO-SVM能对其进行精确识别和分类,且GWO-SVM相对于粒子群优化(Particle Swarm Optimization,PSO)SVM模型和遗传算法(Genetic Algorithm,GA)优化SVM模型具有更短的运行时间和更高准确率,平均准确率高达92.5%。 展开更多
关键词 风力机齿轮箱 故障诊断 集合经验模态分解 灰狼算法优化 支持向量机 模糊熵
下载PDF
基于增强层次注意熵和极限学习机的轴承故障检测方法 被引量:3
2
作者 朱文轩 张书维 王琳 《机电工程》 CAS 北大核心 2023年第12期1857-1868,共12页
采用传统诊断模型进行轴承故障识别时,需要设置较多的超参数,且参数对模型性能的影响较大。针对这一问题,提出了一种基于增强层次注意熵(EHATE)和灰狼算法优化的极限学习机(GWO-ELM)的滚动轴承故障诊断模型,其中,EHATE方法用于提取滚动... 采用传统诊断模型进行轴承故障识别时,需要设置较多的超参数,且参数对模型性能的影响较大。针对这一问题,提出了一种基于增强层次注意熵(EHATE)和灰狼算法优化的极限学习机(GWO-ELM)的滚动轴承故障诊断模型,其中,EHATE方法用于提取滚动轴承振动信号的低频和高频特征信息,而GWO-ELM用于识别滚动轴承的故障类型。首先,基于分形理论和增强的层次分析,提出了一种能够同时测量非平稳时间序列在低频段和高频段复杂度的指标-增强层次注意熵(EHATE);随后,利用EHATE方法充分提取了滚动轴承振动信号的故障特征,实现了对不同样本故障状态进行精确表征的目的;最后,将故障特征输入至GWO-ELM分类器中,进行了滚动轴承故障类型和故障严重程度的识别,基于EHATE+GWO-ELM模型对3组滚动轴承故障数据集进行了实验,并将其与其他故障诊断方法进行了对比。研究结果表明:该故障诊断模型能够快速有效地识别滚动轴承的不同故障,3组数据集的识别准确率分别达到了100%、99.2%和96.92%,在识别准确率和特征提取效率方面优于对比方法;同时该故障诊断模型在特征提取阶段仅需要设置单个参数,且该参数对模型的识别准确率影响非常小。该研究结果可以为滚动轴承的故障诊断提供新的视角和方案。 展开更多
关键词 增强层次注意熵 极限学习机 灰狼算法优化 故障特征提取 故障类型识别 滚动轴承振动信号
下载PDF
改进灰狼算法优化支持向量机在风力机齿轮箱故障诊断中的应用 被引量:8
3
作者 胡璇 李春 +1 位作者 叶柯华 张万福 《机械强度》 CAS CSCD 北大核心 2021年第6期1289-1296,共8页
针对灰狼算法易陷入局部最优和后期寻优能力不足等缺点,提出改进非线性控制因子以提高算法收敛精度及稳定性。采用美国国家可再生能源实验室(National Renewable Energy Laboratory, NREL)"Gearbox Reliability Collaborative"... 针对灰狼算法易陷入局部最优和后期寻优能力不足等缺点,提出改进非线性控制因子以提高算法收敛精度及稳定性。采用美国国家可再生能源实验室(National Renewable Energy Laboratory, NREL)"Gearbox Reliability Collaborative"项目测试采集的风力机齿轮箱振动信号为分析对象,经集合经验模态分解后,计算各本征模态函数分量的模糊熵并构建高维特征向量,后利用等距映射进行降维。利用改进灰狼算法优化支持向量机,对降维后齿轮箱故障特征集进行诊断。结果表明:改进灰狼优化算法相较于灰狼算法、粒子群算法和遗传算法可有效避免陷入局部最优并提高支持向量机诊断精度及稳定度,在不同测试样本下其准确率均最高,平均准确率达93.17%。 展开更多
关键词 风力机齿轮箱 故障诊断 改进灰狼算法优化 等距映射 支持向量机
下载PDF
基于GWO-ELM算法与模糊控制的无标定视觉伺服研究
4
作者 卢浩文 肖曙红 +1 位作者 林耿聪 招子安 《组合机床与自动化加工技术》 北大核心 2024年第3期82-86,共5页
针对传统基于图像的视觉伺服系统运行速度慢,图像雅可比矩阵的求解受标定精度影响的问题,提出一种基于灰狼算法优化极限学习机(GWO-ELM)与模糊控制相结合的视觉伺服控制方法。该方法利用灰狼算法(GWO)优化ELM模型初始权重增加模型稳定性... 针对传统基于图像的视觉伺服系统运行速度慢,图像雅可比矩阵的求解受标定精度影响的问题,提出一种基于灰狼算法优化极限学习机(GWO-ELM)与模糊控制相结合的视觉伺服控制方法。该方法利用灰狼算法(GWO)优化ELM模型初始权重增加模型稳定性,估计图像雅可比矩阵伪逆预测机械臂末端运动速度,之后引入模糊控制(Fuzzy Control)设计视觉伺服控制器构建无标定视觉伺服控制系统,并进行上机实验。实验结果表明,Fuzzy Control-GWO-ELM-IBVS的运行效率相对于GWO-ELM-IBVS得到了提升,定位误差能控制在规定阈值,验证了提出的无标定视觉伺服控制系统的有效性。 展开更多
关键词 图像雅可比矩阵 灰狼算法优化极限学习机 模糊控制
下载PDF
基于MGWO-SCN的滚动轴承故障诊断方法 被引量:3
5
作者 冯铃 张楚 刘伟渭 《机电工程》 CAS 北大核心 2022年第10期1382-1389,共8页
为了提高滚动轴承故障诊断模型的鲁棒性和泛化能力,提出了一种基于改进灰狼算法优化随机配置网络(MGWO-SCN)的滚动轴承故障诊断模型。首先,在随机配置网络(SCN)中引入L2范数惩罚项,提高了SCN在实际应用中的泛化能力;然后,在灰狼算法(GWO... 为了提高滚动轴承故障诊断模型的鲁棒性和泛化能力,提出了一种基于改进灰狼算法优化随机配置网络(MGWO-SCN)的滚动轴承故障诊断模型。首先,在随机配置网络(SCN)中引入L2范数惩罚项,提高了SCN在实际应用中的泛化能力;然后,在灰狼算法(GWO)中融入差分进化机制,构建了改进灰狼算法(MGWO),并用其对SCN的惩罚项系数C进行了优化;最后,通过分析美国凯斯西储大学(CWRU)轴承振动信号数据集的频域特征信息,构造了基于频域特征参量的振动数据集;并分别用BP神经网络(BPNN)、极限学习机(ELM)和支持向量机(SVM)诊断模型,以及MGWO和粒子群优化算法(PSO)对所提模型进行了对比仿真测试。研究结果表明:在30次重复实验中,采用基于改进灰狼算法优化随机配置网络(MGWO-SCN)的方法,可以准确地识别出12种轴承运行状态,相比于BPNN、ELM和SVM轴承诊断方法,该方法的诊断平均准确率分别提高了7.27%、6.47%和8.67%;另外,MGWO-SCN在优化故障诊断模型方面具有更强的全局搜索能力,相比于GWO-SCN和PSO-SCN,该模型预测结果的偏差值更小,测试集准确率更高。 展开更多
关键词 旋转机械 滚动轴承故障诊断模型 改进灰狼算法优化随机配置网络 鲁棒性 泛化能力
下载PDF
基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断 被引量:3
6
作者 陈爱午 王红卫 《机电工程》 CAS 北大核心 2023年第8期1157-1166,共10页
针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDA... 针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDAN的白噪声幅值权重和噪声添加次数,并对行星齿轮箱的振动信号进行了HBA-ICEEMDAN分解,得到了若干个本征模态函数,筛选出其中相关系数较大的分量进行了重构;然后,利用HWPE提取了重构低噪信号的敏感特征值,获得了故障特征向量;最后,利用GWO优化了SVM的惩罚系数和核系数,训练GWO-SVM多故障分类器,对行星齿轮箱损伤进行了识别;利用行星齿轮箱的振动数据进行实验,验证了算法的有效性。研究结果表明:结合HBA-ICEEMDAN、HWPE和GWO-SVM的行星齿轮箱故障诊断方法能够准确地识别行星齿轮箱的典型单点故障和复合故障,识别准确率达到了98.15%。相较于其他组合方法,该方法在行星齿轮箱故障诊断中更具有有效性,更具有优越性。 展开更多
关键词 齿轮传动 蜜獾算法 改进自适应噪声完备经验模态分解 层次加权排列熵 灰狼算法-优化支持向量机 行星齿轮箱 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部