Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized...Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.展开更多
In the fields of trace gas detection,electric field detection,visible optical communication,and beyond,laser tuning technology plays an increasingly important role,as shown in Fig.S1.Following the miniaturization of o...In the fields of trace gas detection,electric field detection,visible optical communication,and beyond,laser tuning technology plays an increasingly important role,as shown in Fig.S1.Following the miniaturization of optoelectronic devices,it is desirable to integrate a large number of lasers with different wavelengths into one chip[1].However,the dynamic wavelength allocation efficiency of fixedwavelength laser is quite low,which greatly limits the monolithic integration of optoelectronics systems.Therefore,the development of laser wavelength tuning technology is urgent and crucial to the efficiency of optoelectronics[2–7].Raman scattering is a physical phenomenon that can be explained by mature normal form[8,9].However,most studies only pay attention to the fact that Raman spectrum is a non-destructive material characterization method with fingerprint identification characteristics,while its essential feature of inelastic scattering is always ignored[10].The natural frequency shift characteristics indicate the possibility of Raman scattering as a feasible method to realize laser wavelength tuning[11–13].展开更多
We propose a scheme for the generation of entangled coherent states for the center-of-mass and relative vibrational modes of two trapped ions. In the scheme the ions are simultaneously illuminated by a single standing...We propose a scheme for the generation of entangled coherent states for the center-of-mass and relative vibrational modes of two trapped ions. In the scheme the ions are simultaneously illuminated by a single standing-wave laser tuned to the carrier. The scheme allows the production of an entangled coherent states with a considerably high speed as long as a laser field of sufficiently high intensity is available.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91123018,61172041,61172040,50975226,and 60801022)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA03A314)the Fundamental Research Funds for the Central Universities
文摘Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.
基金financially supported by the National Natural Science Foundation of China(91833301 and 61604178)。
文摘In the fields of trace gas detection,electric field detection,visible optical communication,and beyond,laser tuning technology plays an increasingly important role,as shown in Fig.S1.Following the miniaturization of optoelectronic devices,it is desirable to integrate a large number of lasers with different wavelengths into one chip[1].However,the dynamic wavelength allocation efficiency of fixedwavelength laser is quite low,which greatly limits the monolithic integration of optoelectronics systems.Therefore,the development of laser wavelength tuning technology is urgent and crucial to the efficiency of optoelectronics[2–7].Raman scattering is a physical phenomenon that can be explained by mature normal form[8,9].However,most studies only pay attention to the fact that Raman spectrum is a non-destructive material characterization method with fingerprint identification characteristics,while its essential feature of inelastic scattering is always ignored[10].The natural frequency shift characteristics indicate the possibility of Raman scattering as a feasible method to realize laser wavelength tuning[11–13].
文摘We propose a scheme for the generation of entangled coherent states for the center-of-mass and relative vibrational modes of two trapped ions. In the scheme the ions are simultaneously illuminated by a single standing-wave laser tuned to the carrier. The scheme allows the production of an entangled coherent states with a considerably high speed as long as a laser field of sufficiently high intensity is available.