An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Br...An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Branch (SB). The study assumes that the fiver discharge and wind are constant. The model successfully reproduced the saltwater intrusion. During spring tide, there is water and salt spillover (WSO and SSO) from the NB into the SB, and tidally averaged (net) water and salt fluxes are 985 m3/s and 24.8 ton/s, respectively. During neap tide, the WSO disappears and its net water flux is 122 m3/s. Meanwhile, the SSO continues, with net salt flux of 1.01 ton/s, much smaller than during spring tide. Because the tidal range during spring tide is smaller in June than in March, overall saltwater intrusion is weaker in June than in March during that tidal period. However, the WSO and SSO still exist in June. Net water and salt fluxes in that month are 622 m3/s and 15.35 ton/s, respectively, decreasing by 363 m3/s and 9.45 ton/s over those in March. Because tidal range during neap tide is greater in June than in March, saltwater intrusion in June is stronger than in March during that tidal period. The WSO and SSO appear in June, with net water and salt fluxes of 280 m3/s and 8.55 ton/s, respectively, increasing by 402 m3/s and 7.54 ton/s over those in March. Saltwater intrusion in the estuary is controlled by the fiver discharge, semi-diurnal flood-ebb tide, semi-monthly spring or neap tide, and seasonal tide variation.展开更多
Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension num...Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model (MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 kin. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5-1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth (1976-1996) to the modem river mouth (1996-present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modem river mouth. The Maximum Tidal Current Speed (MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height (H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of Hi/3 to depth being 0.4-0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07myr-1. Based on the results of this study, we infer that in the future, the modem river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth (Intermediate region) will continue to erode. As the modem river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Co展开更多
基金Supported by the National Basic Science Research Program of Global Change Research(No.2010CB951201)the Funds for Creative Research Groups of China(No.41021064)the Marine Special Program for Scientific Research on Public Causes(No.201005019)
文摘An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Branch (SB). The study assumes that the fiver discharge and wind are constant. The model successfully reproduced the saltwater intrusion. During spring tide, there is water and salt spillover (WSO and SSO) from the NB into the SB, and tidally averaged (net) water and salt fluxes are 985 m3/s and 24.8 ton/s, respectively. During neap tide, the WSO disappears and its net water flux is 122 m3/s. Meanwhile, the SSO continues, with net salt flux of 1.01 ton/s, much smaller than during spring tide. Because the tidal range during spring tide is smaller in June than in March, overall saltwater intrusion is weaker in June than in March during that tidal period. However, the WSO and SSO still exist in June. Net water and salt fluxes in that month are 622 m3/s and 15.35 ton/s, respectively, decreasing by 363 m3/s and 9.45 ton/s over those in March. Because tidal range during neap tide is greater in June than in March, saltwater intrusion in June is stronger than in March during that tidal period. The WSO and SSO appear in June, with net water and salt fluxes of 280 m3/s and 8.55 ton/s, respectively, increasing by 402 m3/s and 7.54 ton/s over those in March. Saltwater intrusion in the estuary is controlled by the fiver discharge, semi-diurnal flood-ebb tide, semi-monthly spring or neap tide, and seasonal tide variation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41030856 and 41006024)the Foundation of Shandong Province (Grant No. BS2012HZ022)+1 种基金the Project of China Geological Survey (Grant No. GZH201100203)the Project of Taishan Scholar
文摘Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model (MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 kin. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5-1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth (1976-1996) to the modem river mouth (1996-present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modem river mouth. The Maximum Tidal Current Speed (MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height (H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of Hi/3 to depth being 0.4-0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07myr-1. Based on the results of this study, we infer that in the future, the modem river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth (Intermediate region) will continue to erode. As the modem river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Co