期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
孪生Swin Transformer的红外与可见光图像融合算法
1
作者 苗壮 毕翔鹤 +2 位作者 马鑫骥 李一 李阳 《陆军工程大学学报》 2024年第3期26-35,共10页
为解决基于卷积神经网络(convolutional neural networks,CNN)的红外与可见光图像融合算法融合过程中未考虑原图像远程依赖关系的问题,提出了一种孪生Swin Transformer的红外与可见光图像融合算法,构建了孪生网络模型。使用潜在低秩表示... 为解决基于卷积神经网络(convolutional neural networks,CNN)的红外与可见光图像融合算法融合过程中未考虑原图像远程依赖关系的问题,提出了一种孪生Swin Transformer的红外与可见光图像融合算法,构建了孪生网络模型。使用潜在低秩表示(latent low-rank representation,LatLRR)分解方法将原图像分解,再分别融合以提升图像融合的精度;使用Swin Transformer分别提取分解后图像的特征,获取图像的远程依赖关系;使用l1-norm正则化方法求解特征范数,利用Softmax分别获得分解后图像的权重图;利用线性加权方法重构融合图像,通过简单的线性加和获得最终融合图像。在评测基准VIFB上对所提算法进行评测,实验结果表明,所提算法与20种融合算法相比,定性性能优良;定量分析,在由13种评价指标组成的评价体系中,该算法能够取得3个最优值,超过大部分融合算法;在运行时间方面,该算法的运行时间成本低于大部分融合算法。所提融合算法相较于其他融合算法,在主观和客观方面均表现出更好的融合性能。 展开更多
关键词 红外与可见光图像融合 潜在表示分解 孪生Swin Transformer 远程依赖关系 加权平均
下载PDF
基于DLatLRR与VGG Net的红外与可见光图像融合 被引量:4
2
作者 沈瑜 陈小朋 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第6期1105-1114,共10页
针对红外与可见光图像融合中特征损失严重、显著目标不突出的问题,提出了一种低秩表示分解与深度神经网络相结合的图像融合算法。首先,对源图像进行潜在低秩表示分解(DLatLRR),得到相应的低秩部分、显著部分及稀疏噪声。然后,分别采用1... 针对红外与可见光图像融合中特征损失严重、显著目标不突出的问题,提出了一种低秩表示分解与深度神经网络相结合的图像融合算法。首先,对源图像进行潜在低秩表示分解(DLatLRR),得到相应的低秩部分、显著部分及稀疏噪声。然后,分别采用16层的VGG Net模型和联合特征加权算法对低秩部分与显著部分进行融合,舍弃二者的稀疏噪声。最后,对融合得到的低秩部分和显著部分进行图像重建,得到最终的融合图像。实验结果表明:与其他算法进行比较,所提算法能够对图像的深层次细节特征进行融合,突出场景中的感兴趣区域,且融合图像的相关差异和、结构相似性、线性相关度等多种客观指标均有所提升,提升最大值分别为0.73、0.15、0.11,噪声产生率的最大缩减值为0.041 2。 展开更多
关键词 图像处理 图像融合 潜在表示分解(DLatLRR) VGG Net 联合特征加权
下载PDF
基于MDLatLRR的CT和MRI图像融合增强方法
3
作者 靳梦姣 王远军 《上海理工大学学报》 CAS CSCD 北大核心 2024年第5期545-555,共11页
以往所提出的医学图像融合算法均对源图像提取相同分解层次的特征,忽略了源图像的特有特征。针对这一问题,提出一种根据不同模态医学图像提取其特有特征的融合方法。首先,使用改进的多级潜在低秩表示分解方法,在提取CT和MRI基础信息和... 以往所提出的医学图像融合算法均对源图像提取相同分解层次的特征,忽略了源图像的特有特征。针对这一问题,提出一种根据不同模态医学图像提取其特有特征的融合方法。首先,使用改进的多级潜在低秩表示分解方法,在提取CT和MRI基础信息和细节信息的基础上,根据成像特点的不同,进一步提取CT图像的骨骼轮廓信息和MRI图像的软组织细节信息。然后,提出一种局部信息熵加权的区域能量函数方法融合细节信息,利用结构显著性度量和改进拉普拉斯能量和方法共同融合基础信息。最后,提出图像引导增强算法,以特有特征为引导对融合后的基础层和细节层进行增强。经实验证明,相比近几年具有代表性的融合方法,所提出的方法不仅在AG,EPI,VIF,SD客观评价指标中分别平均提高了9.45%,11.75%,14.79%,10.51%,而且在主观评价中也取得更好的效果,实现了CT和MRI图像精准融合。 展开更多
关键词 图像融合 多级潜在表示分解 图像增强 改进的拉普拉斯能量和
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部