期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于显著性检测与梯度导向滤波的红外与可见光图像融合 被引量:6
1
作者 谢诗冬 周冬明 +2 位作者 聂仁灿 刘琰煜 王长城 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期1053-1063,共11页
针对红外与可见光融合图像背景信息丰富度不足,以及在融合过程中红外目标显著性、边缘轮廓清晰度和细节纹理信息的保留难以同时兼顾的问题,提出了一种在潜在低秩分解基础上结合图像增强和显著性检测,并运用梯度导向滤波重构融合决策图... 针对红外与可见光融合图像背景信息丰富度不足,以及在融合过程中红外目标显著性、边缘轮廓清晰度和细节纹理信息的保留难以同时兼顾的问题,提出了一种在潜在低秩分解基础上结合图像增强和显著性检测,并运用梯度导向滤波重构融合决策图的红外与可见光融合方法.首先使用增强算法提高可见光图像的细节轮廓清晰度,并对红外源图使用视觉显著性检测处理,提取最初的显著性权重图;接着对红外图像与增强图像进行潜在低秩分解,获取细节层和基础层,将细节层作为引导图像引入梯度导向滤波系统,对之前获取的显著性权重图进行优化,得到对图像细节和轮廓把握更加精准的二次权重图;然后将初次权重和二次权重作为融合决策图分别引导基础层和细节层的融合;最后将重构好的细节和基础层使用加权平均法进行融合得到最终结果.实验结果表明,算法对融合结果中细节信息的保留,边缘轮廓分辨度和红外目标显著性的提升,均有着较好的表现,在质量指标如平均梯度、视觉信息保真度、图像互信息等方面也取得了较好的效果. 展开更多
关键词 视觉显著性检测 梯度导向滤波 图像融合 潜在分解 权重重构
下载PDF
结合潜在低秩分解和稀疏表示的脑部图像融合
2
作者 张亚加 邱啟蒙 +1 位作者 刘恒 邵建龙 《光电子.激光》 CAS CSCD 北大核心 2023年第11期1225-1232,共8页
针对低秩分解和稀疏表示(space representation,SR)造成融合图像信息缺失的问题,提出一种结合潜在低秩分解和SR的脑部图像融合算法。首先,将源图像分解为低秩、稀疏和噪声3种成分,面对不同分解成分特性间的差异,分别构造低秩字典和稀疏... 针对低秩分解和稀疏表示(space representation,SR)造成融合图像信息缺失的问题,提出一种结合潜在低秩分解和SR的脑部图像融合算法。首先,将源图像分解为低秩、稀疏和噪声3种成分,面对不同分解成分特性间的差异,分别构造低秩字典和稀疏字典进行描述:采用加权灰度值的方法处理低秩成分,以保持其轮廓和亮度特征;对于稀疏成分,设计一种多范数加权度量的方法对SR进行改进,以保持其高维信息,剔除噪声成分。比对当前主流的5种算法,在视觉效果和客观指标上,本文方法效果最优。 展开更多
关键词 潜在分解 多范数加权度量 脑部图像 稀疏表示(SR) 融合指标
原文传递
基于MDLatLRR和KPCA的光场图像全聚焦融合 被引量:2
3
作者 黄泽丰 杨莘 +1 位作者 邓慧萍 李青松 《光子学报》 EI CAS CSCD 北大核心 2023年第4期247-261,共15页
为了提升光场成像的空间分辨率,结合光场图像数字重聚焦与多聚焦图像融合,提出了一种基于多尺度潜在低秩分解和核主成分分析的光场图像全聚焦融合算法。首先,对光场图像进行数字重聚焦得到重聚焦图像,然后对各重聚焦图像进行多尺度分解... 为了提升光场成像的空间分辨率,结合光场图像数字重聚焦与多聚焦图像融合,提出了一种基于多尺度潜在低秩分解和核主成分分析的光场图像全聚焦融合算法。首先,对光场图像进行数字重聚焦得到重聚焦图像,然后对各重聚焦图像进行多尺度分解提取出基础层和显著层,对基础层、显著层分别采用局部梯度差值加权算法和多尺度梯度域显著性提取算法计算相应的特征系数;其次,联立基础层和各显著层的特征系数矩阵,然后用核主成分分析进行降维融合得到融合特征系数矩阵,使得经融合特征系数生成的聚焦决策图能充分考虑基础层和显著层的特征信息;最后,用聚焦决策图引导重聚焦图像进行全聚焦融合。实验结果表明,该算法与传统方法相比在视觉效果和边缘信息丰富度上具有更优表现,所生成的光场全聚焦图像具有更高的分辨率和更好的视觉效果。 展开更多
关键词 光场 全聚焦图像融合 数字重聚焦 多尺度潜在分解 核主成分分析
下载PDF
孪生Swin Transformer的红外与可见光图像融合算法
4
作者 苗壮 毕翔鹤 +2 位作者 马鑫骥 李一 李阳 《陆军工程大学学报》 2024年第3期26-35,共10页
为解决基于卷积神经网络(convolutional neural networks,CNN)的红外与可见光图像融合算法融合过程中未考虑原图像远程依赖关系的问题,提出了一种孪生Swin Transformer的红外与可见光图像融合算法,构建了孪生网络模型。使用潜在低秩表示... 为解决基于卷积神经网络(convolutional neural networks,CNN)的红外与可见光图像融合算法融合过程中未考虑原图像远程依赖关系的问题,提出了一种孪生Swin Transformer的红外与可见光图像融合算法,构建了孪生网络模型。使用潜在低秩表示(latent low-rank representation,LatLRR)分解方法将原图像分解,再分别融合以提升图像融合的精度;使用Swin Transformer分别提取分解后图像的特征,获取图像的远程依赖关系;使用l1-norm正则化方法求解特征范数,利用Softmax分别获得分解后图像的权重图;利用线性加权方法重构融合图像,通过简单的线性加和获得最终融合图像。在评测基准VIFB上对所提算法进行评测,实验结果表明,所提算法与20种融合算法相比,定性性能优良;定量分析,在由13种评价指标组成的评价体系中,该算法能够取得3个最优值,超过大部分融合算法;在运行时间方面,该算法的运行时间成本低于大部分融合算法。所提融合算法相较于其他融合算法,在主观和客观方面均表现出更好的融合性能。 展开更多
关键词 红外与可见光图像融合 潜在表示分解 孪生Swin Transformer 远程依赖关系 加权平均
下载PDF
基于DLatLRR与VGG Net的红外与可见光图像融合 被引量:4
5
作者 沈瑜 陈小朋 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第6期1105-1114,共10页
针对红外与可见光图像融合中特征损失严重、显著目标不突出的问题,提出了一种低秩表示分解与深度神经网络相结合的图像融合算法。首先,对源图像进行潜在低秩表示分解(DLatLRR),得到相应的低秩部分、显著部分及稀疏噪声。然后,分别采用1... 针对红外与可见光图像融合中特征损失严重、显著目标不突出的问题,提出了一种低秩表示分解与深度神经网络相结合的图像融合算法。首先,对源图像进行潜在低秩表示分解(DLatLRR),得到相应的低秩部分、显著部分及稀疏噪声。然后,分别采用16层的VGG Net模型和联合特征加权算法对低秩部分与显著部分进行融合,舍弃二者的稀疏噪声。最后,对融合得到的低秩部分和显著部分进行图像重建,得到最终的融合图像。实验结果表明:与其他算法进行比较,所提算法能够对图像的深层次细节特征进行融合,突出场景中的感兴趣区域,且融合图像的相关差异和、结构相似性、线性相关度等多种客观指标均有所提升,提升最大值分别为0.73、0.15、0.11,噪声产生率的最大缩减值为0.041 2。 展开更多
关键词 图像处理 图像融合 潜在表示分解(DLatLRR) VGG Net 联合特征加权
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部