针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方...针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。展开更多
针对微分局部均值分解(Differential local mean decomposition, DLMD)方法中微分次数计算缺乏理论指导以及传统性能退化指标无法准确表示滚动轴承在全寿命阶段上当前状态的问题,提出了一种基于HDLMD(Hilbert-differential local mean d...针对微分局部均值分解(Differential local mean decomposition, DLMD)方法中微分次数计算缺乏理论指导以及传统性能退化指标无法准确表示滚动轴承在全寿命阶段上当前状态的问题,提出了一种基于HDLMD(Hilbert-differential local mean decomposition, HDLMD)和JRD(Jensen-Renyi divergence)的滚动轴承性能评估方法。该方法首先对原始振动信号进行HDLMD分解,提取乘积函数(Product function, PF)矩阵;然后,基于拉普拉斯分值(Laplacian score, LS)选择包含最多故障信息的PF分量;再计算筛选之后的有效PF分量的概率分布,得到有效PF分量的Renyi熵值;最后,计算正常信号与不同故障程度信号之间的JRD距离,并判断滚动轴承的退化状态。通过凯西斯储大学(Case western reserve university, CWRU)滚动轴承实验数据和NASA(National aeronautics and space administration)全寿命周期数据实验表明,本文所提方法可以准确、有效地评估轴承性能的退化状态。展开更多
文摘针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。
文摘针对微分局部均值分解(Differential local mean decomposition, DLMD)方法中微分次数计算缺乏理论指导以及传统性能退化指标无法准确表示滚动轴承在全寿命阶段上当前状态的问题,提出了一种基于HDLMD(Hilbert-differential local mean decomposition, HDLMD)和JRD(Jensen-Renyi divergence)的滚动轴承性能评估方法。该方法首先对原始振动信号进行HDLMD分解,提取乘积函数(Product function, PF)矩阵;然后,基于拉普拉斯分值(Laplacian score, LS)选择包含最多故障信息的PF分量;再计算筛选之后的有效PF分量的概率分布,得到有效PF分量的Renyi熵值;最后,计算正常信号与不同故障程度信号之间的JRD距离,并判断滚动轴承的退化状态。通过凯西斯储大学(Case western reserve university, CWRU)滚动轴承实验数据和NASA(National aeronautics and space administration)全寿命周期数据实验表明,本文所提方法可以准确、有效地评估轴承性能的退化状态。