期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
考虑岩体非均质性的隧道掌子面图像分级方法
1
作者 卢振龙 宋冠先 +6 位作者 梁铭 韩玉 朱孟龙 彭浩 严胜杰 卢晓晓 董宏源 《公路》 北大核心 2023年第12期399-406,共8页
针对隧道掌子面围岩等级识别主观性强、依赖技术人员经验,且同一隧道掌子面某一区域地质情况可能存在差异等问题,通过引入深度学习方法,结合掌子面图像滑窗识别技术,开展掌子面围岩等级自动识别研究。通过现场采集隧道掌子面图像共1192... 针对隧道掌子面围岩等级识别主观性强、依赖技术人员经验,且同一隧道掌子面某一区域地质情况可能存在差异等问题,通过引入深度学习方法,结合掌子面图像滑窗识别技术,开展掌子面围岩等级自动识别研究。通过现场采集隧道掌子面图像共1192张,建立隧道掌子面图像数据库,采用图像预处理技术对掌子面图像进行预处理以满足模型训练要求;构建AlexNet、ResNet34和ResNet50共3类卷积神经网络模型,并对比其性能优劣与适用性,获得识别准确率为85.2%的ResNet50最优模型;最后结合ResNet50模型建立掌子面图像滑窗识别技术,解决了非均质掌子面岩体分级效果差的问题,进一步提高识别准确率,实现隧道掌子面围岩等级自动识别。经过实际隧道工程应用,验证了该方法的可行性与适用性。 展开更多
关键词 隧道工程 围岩等级 深度学习 识别 ResNet50
原文传递
卷积神经网络滑窗识别结合语义推理的城市功能区分类
2
作者 王严 刘万军 +1 位作者 谭亚丽 李玉 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第6期950-959,共10页
目前基于遥感图像的城市功能区分类方法通常采用光谱特征解译、兴趣点数据辅助、评价策略优化等方式,依赖大量人工操作,并借助遥感图像外的其他信息源。为了解决以上问题,提出利用卷积神经网络进行滑窗识别,提取图像语义标签,结合语义... 目前基于遥感图像的城市功能区分类方法通常采用光谱特征解译、兴趣点数据辅助、评价策略优化等方式,依赖大量人工操作,并借助遥感图像外的其他信息源。为了解决以上问题,提出利用卷积神经网络进行滑窗识别,提取图像语义标签,结合语义推理机制实现城市功能区分类的滑窗-推理方法。首先,建立两级城市功能区分类,以二级城市功能区为标识标注训练样本,并以此训练卷积神经网络作为识别器;然后,设计有重叠的滑窗识别模式,使用识别器辨识滑窗区域内图像块的二级城市功能区类型;最后,提出一个带权重的打分机制,作为语义推理方式,语义推理对象为全部识别结果,确定各图像块的一级城市功能区类型,实现遥感图像城市功能区分类。实验使用模拟图像和高分辨率遥感图像,两种图像的总分类精度分别可达94.50%、92.04%。滑窗-推理方法旨在通过语义推理处理滑窗识别产生的多语义标签,根据多语义标签确定对象的真实城市功能区。实验结果表明,所提方法无需辅助信息,直接利用遥感图像进行城市功能区分类是可行和有效的。 展开更多
关键词 城市功能区 图像分类 卷积神经网络 识别 语义推理 投票机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部