实时预测民航发动机滑油量对保障飞行安全具有重要意义。针对滑油量受发动机多个工作状态的多个参数影响,具有影响参数多,提取方法不确定等问题,提出了一种基于邻域粗糙集(neighborhood rough set,NRS)和灰狼优化(grey wolf optimizer,G...实时预测民航发动机滑油量对保障飞行安全具有重要意义。针对滑油量受发动机多个工作状态的多个参数影响,具有影响参数多,提取方法不确定等问题,提出了一种基于邻域粗糙集(neighborhood rough set,NRS)和灰狼优化(grey wolf optimizer,GWO)-Elman相结合的方法预测滑油量。首先通过邻域粗糙集提取对滑油量重要度高的发动机工作阶段,将提取后的工作阶段有关参数作为特征向量输入到灰狼优化-Elman的网络模型中,灰狼算法通过计算和比较个体的适应度来优化Elman网络中的权值和阈值,保证Elman网络中的权值和阈值达到全局最优。预测结果表明,精度达到98.44%,满足工程应用的精度要求。研究结果为及时监测民航发动机滑油系统的健康状况提供理论依据。展开更多
文摘实时预测民航发动机滑油量对保障飞行安全具有重要意义。针对滑油量受发动机多个工作状态的多个参数影响,具有影响参数多,提取方法不确定等问题,提出了一种基于邻域粗糙集(neighborhood rough set,NRS)和灰狼优化(grey wolf optimizer,GWO)-Elman相结合的方法预测滑油量。首先通过邻域粗糙集提取对滑油量重要度高的发动机工作阶段,将提取后的工作阶段有关参数作为特征向量输入到灰狼优化-Elman的网络模型中,灰狼算法通过计算和比较个体的适应度来优化Elman网络中的权值和阈值,保证Elman网络中的权值和阈值达到全局最优。预测结果表明,精度达到98.44%,满足工程应用的精度要求。研究结果为及时监测民航发动机滑油系统的健康状况提供理论依据。