受南海季风和复杂地形的影响,南海环流场具有复杂的空间结构和明显的季节变化,同时此海域又是中尺度涡多发海域,这些特征必然对南海温跃层深度的水平分布及季节变化有显著影响。首先,基于GDEM(General-ized Digital Environmental Model...受南海季风和复杂地形的影响,南海环流场具有复杂的空间结构和明显的季节变化,同时此海域又是中尺度涡多发海域,这些特征必然对南海温跃层深度的水平分布及季节变化有显著影响。首先,基于GDEM(General-ized Digital Environmental Model)的温、盐资料和利用P矢量方法计算并分析了南海的表层环流和多涡结构的空间分布特征和季节变化规律。在此基础上,分析了南海温跃层深度的空间分布特征和季节变化规律。结果表明,南海环流和多涡结构对南海温跃层具有显著的影响。展开更多
The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate chan...The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate change. The climatic phenomena such as the East Asian monsoon and E1 Nifio-Southern Oscillation (ENSO) exert a strong influence on flux, water properties and vertical stratification of the ITF. This work studied sediments of Core SO 18462 that was retrieved from the outflow side of the ITF in the Timor Sea in order to investigate response of the ITF to monsoon and ENSO activities since the last glacial. Based on Mg/Ca ratios and oxygen isotopes in shells of planktonic foraminiferal surface and thermocline species, seawater temperatures and salinity of both surface and thermocline waters and vertical thermal gradient of the ITF outflow were recon- structed. Records of Core SO18462 were then compared with those from Core 3cBX that was recovered from the western Pa- cific warm pool (WPWP). The results displayed that similar surface waters occurred in the Timor Sea and the WPWP during the last glacial. Since -16 ka, an apparent difference in surface waters between these two regions exists in salinity, indicated by much fresher waters in the Timor Sea than in the WPWP. In contrast, there is little change in difference of sea surface temper- atures (SSTs). With regard to thermocline temperature (TT), it increased until -11.5 ka since the last glacial, and then re- mained an overall unchanged trend in the WPWP but continuously decreased in the Timor Sea towards the late Holocene. Since ~6 ka, thermocline waters have tended to be close to each other in between the Timor Sea and the WPWP. It is indicated that intensified precipitation due to East Asian monsoon and possible ENSO cold phase significantly freshened surface waters over the Indonesian Seas, impeding the ITF surface flow and in turn having enhanced thermocline flow during the Holocene. Consequently, thermocline water of the ITF outflo展开更多
为了更好地研究厄尔尼诺事件对南海(South China Sea,SCS)温跃层深度(Thermocline Depth,TD)的影响,基于再分析资料,本文分析了1958—2010年南海温跃层深度对厄尔尼诺事件响应的空间特征。分析表明,在厄尔尼诺事件期间,南海温跃层深度...为了更好地研究厄尔尼诺事件对南海(South China Sea,SCS)温跃层深度(Thermocline Depth,TD)的影响,基于再分析资料,本文分析了1958—2010年南海温跃层深度对厄尔尼诺事件响应的空间特征。分析表明,在厄尔尼诺事件期间,南海温跃层深度异常存在空间分布不对称性,这种不对称性主要表现为南北不对称性。与中部型厄尔尼诺事件相比,南海温跃层深度对东部型厄尔尼诺事件的响应要更强。西北太平洋异常反气旋(Western North Pacific Anomalous Anticyclone, WNPAC)是连接厄尔尼诺现象和南海风场异常的重要桥梁。厄尔尼诺事件通过WNPAC使得南海风场异常具有南北不对称性,再进一步导致温跃层深度异常的南北不对称性;WNPAC的差异以及WNPAC导致的南海风场的差异是南海温跃层深度在不同厄尔尼诺事件中存在差异的关键原因。展开更多
The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006-2008 Indian Ocean Dipole(IOD).The 2006 IOD lasted for seven months,developing in May and reaching i...The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006-2008 Indian Ocean Dipole(IOD).The 2006 IOD lasted for seven months,developing in May and reaching its peak in December,while the 2007 and 2008 IODs were short-lived events,beginning in early May and ending abruptly in September,with much weaker amplitudes.Associated with the above IODs,the impulses of the sea surface height(SSH) anomalies reflect the forcing from an intraseasonal time scale,which was important to the evolution of IODs in 2007 and 2008.At the thermocline depth,dominated by the propagation of Kelvin waves,the warming/cooling temperature signals could reach the surface at a particular time.When the force is strong and the local thermocline condition is favorable,the incoming Kelvin waves dramatically impact the sea surface temperature(SST) in the eastern equatorial Indian Ocean.In July 2007 and late July 2008,the downwelling Kelvin waves,triggered by the Madden-Julian Oscillation(MJO) in the eastern and central equatorial Indian Ocean,suppressed the thermocline in the Sumatra and the Java coast and terminated the IOD,which made those events short-lived and no longer persist into the boreal fall season as the canonical IOD does.展开更多
Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our result...Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole (IOD) events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies. The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer. The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields, while the heat flux effect is important on SST.展开更多
Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (C...Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.展开更多
文摘受南海季风和复杂地形的影响,南海环流场具有复杂的空间结构和明显的季节变化,同时此海域又是中尺度涡多发海域,这些特征必然对南海温跃层深度的水平分布及季节变化有显著影响。首先,基于GDEM(General-ized Digital Environmental Model)的温、盐资料和利用P矢量方法计算并分析了南海的表层环流和多涡结构的空间分布特征和季节变化规律。在此基础上,分析了南海温跃层深度的空间分布特征和季节变化规律。结果表明,南海环流和多涡结构对南海温跃层具有显著的影响。
基金jointly supported by National Natural Science Foundation of China(Grant No.41176044)The German Research Foundation(Grant No.KU649/28-1)+1 种基金Specialized Research Fund for the Doctoral Program(Grant No.20096101120025)State Key Laboratory of Continental Dynamics(Grant No.BJ12139)
文摘The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate change. The climatic phenomena such as the East Asian monsoon and E1 Nifio-Southern Oscillation (ENSO) exert a strong influence on flux, water properties and vertical stratification of the ITF. This work studied sediments of Core SO 18462 that was retrieved from the outflow side of the ITF in the Timor Sea in order to investigate response of the ITF to monsoon and ENSO activities since the last glacial. Based on Mg/Ca ratios and oxygen isotopes in shells of planktonic foraminiferal surface and thermocline species, seawater temperatures and salinity of both surface and thermocline waters and vertical thermal gradient of the ITF outflow were recon- structed. Records of Core SO18462 were then compared with those from Core 3cBX that was recovered from the western Pa- cific warm pool (WPWP). The results displayed that similar surface waters occurred in the Timor Sea and the WPWP during the last glacial. Since -16 ka, an apparent difference in surface waters between these two regions exists in salinity, indicated by much fresher waters in the Timor Sea than in the WPWP. In contrast, there is little change in difference of sea surface temper- atures (SSTs). With regard to thermocline temperature (TT), it increased until -11.5 ka since the last glacial, and then re- mained an overall unchanged trend in the WPWP but continuously decreased in the Timor Sea towards the late Holocene. Since ~6 ka, thermocline waters have tended to be close to each other in between the Timor Sea and the WPWP. It is indicated that intensified precipitation due to East Asian monsoon and possible ENSO cold phase significantly freshened surface waters over the Indonesian Seas, impeding the ITF surface flow and in turn having enhanced thermocline flow during the Holocene. Consequently, thermocline water of the ITF outflo
文摘为了更好地研究厄尔尼诺事件对南海(South China Sea,SCS)温跃层深度(Thermocline Depth,TD)的影响,基于再分析资料,本文分析了1958—2010年南海温跃层深度对厄尔尼诺事件响应的空间特征。分析表明,在厄尔尼诺事件期间,南海温跃层深度异常存在空间分布不对称性,这种不对称性主要表现为南北不对称性。与中部型厄尔尼诺事件相比,南海温跃层深度对东部型厄尔尼诺事件的响应要更强。西北太平洋异常反气旋(Western North Pacific Anomalous Anticyclone, WNPAC)是连接厄尔尼诺现象和南海风场异常的重要桥梁。厄尔尼诺事件通过WNPAC使得南海风场异常具有南北不对称性,再进一步导致温跃层深度异常的南北不对称性;WNPAC的差异以及WNPAC导致的南海风场的差异是南海温跃层深度在不同厄尔尼诺事件中存在差异的关键原因。
基金supported by the National Basic Research Program of China(973 Program,2010CB950300 & 2012CB955603)the National Nature Science Foundation of China(41176024,41176023,& 41149908)
文摘The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006-2008 Indian Ocean Dipole(IOD).The 2006 IOD lasted for seven months,developing in May and reaching its peak in December,while the 2007 and 2008 IODs were short-lived events,beginning in early May and ending abruptly in September,with much weaker amplitudes.Associated with the above IODs,the impulses of the sea surface height(SSH) anomalies reflect the forcing from an intraseasonal time scale,which was important to the evolution of IODs in 2007 and 2008.At the thermocline depth,dominated by the propagation of Kelvin waves,the warming/cooling temperature signals could reach the surface at a particular time.When the force is strong and the local thermocline condition is favorable,the incoming Kelvin waves dramatically impact the sea surface temperature(SST) in the eastern equatorial Indian Ocean.In July 2007 and late July 2008,the downwelling Kelvin waves,triggered by the Madden-Julian Oscillation(MJO) in the eastern and central equatorial Indian Ocean,suppressed the thermocline in the Sumatra and the Java coast and terminated the IOD,which made those events short-lived and no longer persist into the boreal fall season as the canonical IOD does.
基金supported by the National Natural Science Foundation of China(Grant Nos.40876001 and40890152)the Program for New Century Excellent Talents in University(Grant No.NCET-08-0510)the State Key Development Program for National Basic Research Program of China under contract(Grant No.2007CB-411803)
文摘Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole (IOD) events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies. The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer. The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields, while the heat flux effect is important on SST.
基金supported by the National Natural Science Foundation of China (Grant No. 41006007)the National Basic Research Program of China (Grant No. 2012CB417404)
文摘Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.