In order to determine the level of resistance of sugar beet varieties against Rhizoctonia solani AG 2-21IIB and AG 4, a methodology was implemented under greenhouse conditions that contemplated the most important crit...In order to determine the level of resistance of sugar beet varieties against Rhizoctonia solani AG 2-21IIB and AG 4, a methodology was implemented under greenhouse conditions that contemplated the most important criteria regarding to plant-pathogen interaction. The effect of plant growth stage on the development of the disease was evaluated. Seven sugar beet varieties were tested for resistance to R. solani AG 2-2IIIB and AG 4. To detect differences in leaf temperature between/L solani inoculated plants and non-infected plants, an infrared (IR) camera was tested. High incidence of R. solani AG 2-2IIIB and AG 4 in sugar beet plants was evident when the fungal inoculum was applied to two and four weeks old plants. At four weeks after sowing, it was the optimum time to inoculate sugar beet plants in order to generate R. solani infection, since at this time all plants were infected. Significant differences were detected regarding disease incidence between sugar beet varieties inoculated with different anastomosis groups. Leaf temperature was significant different between inoculated and non-inoculated plants, demonstrated that this technique could be a new tool for breeders to screen for resistance of new varieties.展开更多
The Soil and Water Assessment Tool(SWAT) has been widely used throughout the world to model crop growth and nutrient uptake in various types of soils.A greenhouse experiment was performed to validate the process equat...The Soil and Water Assessment Tool(SWAT) has been widely used throughout the world to model crop growth and nutrient uptake in various types of soils.A greenhouse experiment was performed to validate the process equations embedded in SWAT for describing the growth and nutrient uptake of tomatoes in south Florida.The scaled growth curve of greenhouse-grown tomatoes was in close agreement with the theoretical model for field conditions,with the scaling factors being the maximum canopy height and the potential heat units.Similarly,the scaled leaf area index(LAI) growth curve and the scaled root depth curve for greenhousegrown tomatoes agreed with the SWAT functions,with the scaling factors being the maximum LAI and maximum root depth.The greenhouse experiment confirmed that the growth of biomass is a linear function of the intercepted photosynthetically active radiation.The fractions of nutrients in the plant biomass under greenhouse conditions were found to be on the order of 60% of those fractions observed in the field.Values of the initial P distribution(0.2 mg kg -1),initial ratio of mineral stable P to mineral active P(50:1),and initial ratio of humic N to humic P(2.4:1) were determined from soil measurements and can be used for field simulations.The conventional saturation-excess model for soil-water percolation was used to predict the movement of water in the top 10 cm of the greenhouse containers and the results agreed well with measurements.展开更多
标题化合物(SYP-249)是沈阳化工研究院正在进行前期开发的除草剂,由5-(2-氯-4-三氟甲基苯氧基)-2-硝基苯甲酸经两步反应制得,提纯后总收率50%。其结构经红外、核磁共振谱和元素分析确证。标题化合物在温室条件下150 g a.i./hm2可防除多...标题化合物(SYP-249)是沈阳化工研究院正在进行前期开发的除草剂,由5-(2-氯-4-三氟甲基苯氧基)-2-硝基苯甲酸经两步反应制得,提纯后总收率50%。其结构经红外、核磁共振谱和元素分析确证。标题化合物在温室条件下150 g a.i./hm2可防除多种杂草,在600 g a.i./hm2对大豆安全。展开更多
文摘In order to determine the level of resistance of sugar beet varieties against Rhizoctonia solani AG 2-21IIB and AG 4, a methodology was implemented under greenhouse conditions that contemplated the most important criteria regarding to plant-pathogen interaction. The effect of plant growth stage on the development of the disease was evaluated. Seven sugar beet varieties were tested for resistance to R. solani AG 2-2IIIB and AG 4. To detect differences in leaf temperature between/L solani inoculated plants and non-infected plants, an infrared (IR) camera was tested. High incidence of R. solani AG 2-2IIIB and AG 4 in sugar beet plants was evident when the fungal inoculum was applied to two and four weeks old plants. At four weeks after sowing, it was the optimum time to inoculate sugar beet plants in order to generate R. solani infection, since at this time all plants were infected. Significant differences were detected regarding disease incidence between sugar beet varieties inoculated with different anastomosis groups. Leaf temperature was significant different between inoculated and non-inoculated plants, demonstrated that this technique could be a new tool for breeders to screen for resistance of new varieties.
文摘The Soil and Water Assessment Tool(SWAT) has been widely used throughout the world to model crop growth and nutrient uptake in various types of soils.A greenhouse experiment was performed to validate the process equations embedded in SWAT for describing the growth and nutrient uptake of tomatoes in south Florida.The scaled growth curve of greenhouse-grown tomatoes was in close agreement with the theoretical model for field conditions,with the scaling factors being the maximum canopy height and the potential heat units.Similarly,the scaled leaf area index(LAI) growth curve and the scaled root depth curve for greenhousegrown tomatoes agreed with the SWAT functions,with the scaling factors being the maximum LAI and maximum root depth.The greenhouse experiment confirmed that the growth of biomass is a linear function of the intercepted photosynthetically active radiation.The fractions of nutrients in the plant biomass under greenhouse conditions were found to be on the order of 60% of those fractions observed in the field.Values of the initial P distribution(0.2 mg kg -1),initial ratio of mineral stable P to mineral active P(50:1),and initial ratio of humic N to humic P(2.4:1) were determined from soil measurements and can be used for field simulations.The conventional saturation-excess model for soil-water percolation was used to predict the movement of water in the top 10 cm of the greenhouse containers and the results agreed well with measurements.
文摘标题化合物(SYP-249)是沈阳化工研究院正在进行前期开发的除草剂,由5-(2-氯-4-三氟甲基苯氧基)-2-硝基苯甲酸经两步反应制得,提纯后总收率50%。其结构经红外、核磁共振谱和元素分析确证。标题化合物在温室条件下150 g a.i./hm2可防除多种杂草,在600 g a.i./hm2对大豆安全。