期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于宽卷积核神经网络与BiLSTM的渔船轨迹分类方法
1
作者
毛思佳
马伟锋
+2 位作者
孙晓勇
王雨晨
王柳迪
《浙江科技学院学报》
CAS
2023年第3期243-251,共9页
【目的】针对使用船舶自动识别系统(automatic identification system,AIS)数据进行船舶类型识别中原始特征较少和时空特征利用不充分的问题,提出了基于数据块的双向长短期记忆卷积神经网络的渔船类型分类方法。【方法】首先将数据以数...
【目的】针对使用船舶自动识别系统(automatic identification system,AIS)数据进行船舶类型识别中原始特征较少和时空特征利用不充分的问题,提出了基于数据块的双向长短期记忆卷积神经网络的渔船类型分类方法。【方法】首先将数据以数据块的形式输入模型,保留短时内的时序特征;然后利用宽卷积核深度卷积神经网络(wide convolutional kernel deep convolutional neural network,WDCNN)模型首层的大卷积对数据进行特征提取;最后采用双向长短期记忆网络(bidirectional long-short-term memory networks,BiLSTM)提取数据的深层时间信息,得到最终的船舶分类结果。【结果】在真实的船舶AIS数据集上进行测试后发现:本模型较主流船舶分类模型对渔船分类的正确率有一定的提升,F1值达到了5%左右的提高。【结论】本试验模型更有利于海事部门对渔船的监管,同时对海上渔场、鱼群分布的研究也有一定的参考价值。
展开更多
关键词
渔船
分类
AIS数据
双向长短期记忆网络
宽卷积网络
下载PDF
职称材料
题名
基于宽卷积核神经网络与BiLSTM的渔船轨迹分类方法
1
作者
毛思佳
马伟锋
孙晓勇
王雨晨
王柳迪
机构
浙江科技学院信息与电子工程学院
出处
《浙江科技学院学报》
CAS
2023年第3期243-251,共9页
基金
浙江科技学院企业委托项目(2020KJ272)。
文摘
【目的】针对使用船舶自动识别系统(automatic identification system,AIS)数据进行船舶类型识别中原始特征较少和时空特征利用不充分的问题,提出了基于数据块的双向长短期记忆卷积神经网络的渔船类型分类方法。【方法】首先将数据以数据块的形式输入模型,保留短时内的时序特征;然后利用宽卷积核深度卷积神经网络(wide convolutional kernel deep convolutional neural network,WDCNN)模型首层的大卷积对数据进行特征提取;最后采用双向长短期记忆网络(bidirectional long-short-term memory networks,BiLSTM)提取数据的深层时间信息,得到最终的船舶分类结果。【结果】在真实的船舶AIS数据集上进行测试后发现:本模型较主流船舶分类模型对渔船分类的正确率有一定的提升,F1值达到了5%左右的提高。【结论】本试验模型更有利于海事部门对渔船的监管,同时对海上渔场、鱼群分布的研究也有一定的参考价值。
关键词
渔船
分类
AIS数据
双向长短期记忆网络
宽卷积网络
Keywords
fishing ship classification
AIS data
bidirectional long-short-term memory networks
wide convolutional network
分类号
TP389.1 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于宽卷积核神经网络与BiLSTM的渔船轨迹分类方法
毛思佳
马伟锋
孙晓勇
王雨晨
王柳迪
《浙江科技学院学报》
CAS
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部