期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于宽卷积核神经网络与BiLSTM的渔船轨迹分类方法
1
作者 毛思佳 马伟锋 +2 位作者 孙晓勇 王雨晨 王柳迪 《浙江科技学院学报》 CAS 2023年第3期243-251,共9页
【目的】针对使用船舶自动识别系统(automatic identification system,AIS)数据进行船舶类型识别中原始特征较少和时空特征利用不充分的问题,提出了基于数据块的双向长短期记忆卷积神经网络的渔船类型分类方法。【方法】首先将数据以数... 【目的】针对使用船舶自动识别系统(automatic identification system,AIS)数据进行船舶类型识别中原始特征较少和时空特征利用不充分的问题,提出了基于数据块的双向长短期记忆卷积神经网络的渔船类型分类方法。【方法】首先将数据以数据块的形式输入模型,保留短时内的时序特征;然后利用宽卷积核深度卷积神经网络(wide convolutional kernel deep convolutional neural network,WDCNN)模型首层的大卷积对数据进行特征提取;最后采用双向长短期记忆网络(bidirectional long-short-term memory networks,BiLSTM)提取数据的深层时间信息,得到最终的船舶分类结果。【结果】在真实的船舶AIS数据集上进行测试后发现:本模型较主流船舶分类模型对渔船分类的正确率有一定的提升,F1值达到了5%左右的提高。【结论】本试验模型更有利于海事部门对渔船的监管,同时对海上渔场、鱼群分布的研究也有一定的参考价值。 展开更多
关键词 渔船分类 AIS数据 双向长短期记忆网络 宽卷积网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部