针对k-means算法易受初始中心影响的缺点,提出了基于改进粒子群算法的k-means聚类算法(k-means cluster algorithm based on Improved PSO,IPK-means),在粒子群算法中加入混沌搜索过程,以增加PSO迭代后期粒子群的多样性,并且在粒子更新...针对k-means算法易受初始中心影响的缺点,提出了基于改进粒子群算法的k-means聚类算法(k-means cluster algorithm based on Improved PSO,IPK-means),在粒子群算法中加入混沌搜索过程,以增加PSO迭代后期粒子群的多样性,并且在粒子更新过程中,给出了一种动态调整因子公式,使得调整因子与该粒子的适应度值大小相关,即同一迭代中不同粒子也会拥有不同的调整因子。最后将改进的PSO算法应用于k-means聚类,为其寻找较好的初始中心,实验结果表明了该算法可取得较好的聚类结果。展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
文摘针对k-means算法易受初始中心影响的缺点,提出了基于改进粒子群算法的k-means聚类算法(k-means cluster algorithm based on Improved PSO,IPK-means),在粒子群算法中加入混沌搜索过程,以增加PSO迭代后期粒子群的多样性,并且在粒子更新过程中,给出了一种动态调整因子公式,使得调整因子与该粒子的适应度值大小相关,即同一迭代中不同粒子也会拥有不同的调整因子。最后将改进的PSO算法应用于k-means聚类,为其寻找较好的初始中心,实验结果表明了该算法可取得较好的聚类结果。
基金国家自然科学基金重点项目(the Key Project of National Natural Science Foundation of China No.50539140)国家自然科学基金(theNational Natural Science Foundation of China under Grant No.50579022)
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.