As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range,...As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solidstate amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous Cu Lixnanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous Cu Lixnanoalloys.展开更多
A systematic series of experiments are designed and performed including inteffacial tension (IFT) measurements concomitant with Bond (BN, the ratio of gravity forces to capillary forces) and swelling/extraction me...A systematic series of experiments are designed and performed including inteffacial tension (IFT) measurements concomitant with Bond (BN, the ratio of gravity forces to capillary forces) and swelling/extraction measurements. Dynamic IFT, BN and swelling/extraction are measured as a function of pressure at temperatures of 30, 50 and 80 ℃. In addition, in the light of measured IFT the minimum miscibility pressure (MMP) of CO2 and light crude oil is determined based on a method called vanishing inteffacial tension (VIT). The obtained results interestingly revealed that equilibrium IFT decreases linearly with pressure in two distinct pressure intervals while equilibrium BN shows an increasing trend as a function of pressure for all of the studied cases while no obvious trend is observed for swell- ing of crude oil and extraction of light-components regarding time, temperature and pressure.展开更多
Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/...Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.展开更多
基金supported by the National Natural Science Foundation of China (11474337, 51472267, 21773303, and 51421002)the Program by Chinese Academy of Sciences (ZDYZ2015-1 and XDB07030100)Austrian-Chinese Cooperative R&D Projects, FFG and Chinese Academy of Sciences (112111KYSB20150002)
文摘As a typical immiscible binary system, copper (Cu) and lithium (Li) show no alloying and chemical intermixing under normal circumstances. Here we show that, when decreasing Cu nanoparticle sizes into ultrasmall range, the nanoscale size effect can play a subtle yet critical role in mediating the chemical activity of Cu and therefore its miscibility with Li, such that the electrochemical alloying and solidstate amorphization will occur in such an immiscible system. This unusual observation was accomplished by performing in-situ studies of the electrochemical lithiation processes of individual CuO nanowires inside a transmission electron microscopy (TEM). Upon lithiation, CuO nanowires are first electrochemically reduced to form discrete ultrasmall Cu nanocrystals that, unexpectedly, can in turn undergo further electrochemical lithiation to form amorphous Cu Lixnanoalloys. Real-time TEM imaging unveils that there is a critical grain size (ca. 6 nm), below which the nanocrystalline Cu particles can be continuously lithiated and amorphized. The possibility that the observed solid-state amorphization of Cu-Li might be induced by electron beam irradiation effect can be explicitly ruled out; on the contrary, it was found that electron beam irradiation will lead to the dealloying of as-formed amorphous Cu Lixnanoalloys.
文摘A systematic series of experiments are designed and performed including inteffacial tension (IFT) measurements concomitant with Bond (BN, the ratio of gravity forces to capillary forces) and swelling/extraction measurements. Dynamic IFT, BN and swelling/extraction are measured as a function of pressure at temperatures of 30, 50 and 80 ℃. In addition, in the light of measured IFT the minimum miscibility pressure (MMP) of CO2 and light crude oil is determined based on a method called vanishing inteffacial tension (VIT). The obtained results interestingly revealed that equilibrium IFT decreases linearly with pressure in two distinct pressure intervals while equilibrium BN shows an increasing trend as a function of pressure for all of the studied cases while no obvious trend is observed for swell- ing of crude oil and extraction of light-components regarding time, temperature and pressure.
基金The National Natural Science Foundation of China (No. 20374032) and Tianjin Science and Technology Key Project (No. 05YFSZSF02200)
文摘Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.