期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
三元函数的三次极限与混合极限 被引量:1
1
作者 毛一波 《数学学习与研究》 2020年第1期2-3,共2页
结合重极限和累次极限,给出了三元函数的混合极限概念,探讨了混合极限与三次极限的区别与联系.研究表明,三元函数的混合极限与三次极限之间没有必然关系,但在一定条件下二者也存在着联系.
关键词 三元函数 三次极限 混合极限
下载PDF
三元函数的重极限与混合极限
2
作者 毛一波 《高等数学研究》 2020年第2期4-6,共3页
本文引入了三元函数的混合极限概念,对三元函数的混合极限与重极限的区别及联系进行了探讨.结论表明,三元函数的混合极限与重极限之间没有必然的蕴含关系,另一方面,在一定条件下二者也存在着联系.
关键词 三元函数 极限 混合极限
下载PDF
基于VMD-SSA-HKELM的超短期负荷预测 被引量:17
3
作者 郭建帅 崔双喜 +2 位作者 郭建斌 姚岱伟 孙冠岳 《国外电子测量技术》 北大核心 2022年第6期105-111,共7页
针对核极限学习机(kernel extreme learning machine,KELM)单一预测模型不稳定以及预测结果不准确,提出了一种变分模态分解(variational mode decomposition,VMD)与麻雀搜索算法(sparrow search algorithm,SSA)优化的混合核极限学习机(h... 针对核极限学习机(kernel extreme learning machine,KELM)单一预测模型不稳定以及预测结果不准确,提出了一种变分模态分解(variational mode decomposition,VMD)与麻雀搜索算法(sparrow search algorithm,SSA)优化的混合核极限学习机(hybrid extreme learning machine,HKELM)模型。首先把预处理后的负荷序列依据变分模态技术分解为若干相对平稳的模态分量,然后同时对每个模态分量建立VMD-SSA-HKELM预测模型;再将负荷数据划分训练集和测试集;依据训练集分别用SSA算法优化HKELM的参数,将测试集代入每个模型,所测的结果叠加得出最终预测值。该模型采用麻雀算法优化的混合核极限学习机,使其在不同的参数下有良好的局部搜索能力,且能增强全局搜索能力。仿真结果表明,VMD-SSA-HKELM模型预测精度接近98.5%,为超短期负荷预测及电力系统稳定运行提供了决策的支持。 展开更多
关键词 变分模态分解 麻雀搜索算法 混合极限学习机 组合预测 超短期负荷预测
下载PDF
PSO-IGWO优化混合KELM的变压器故障诊断方法 被引量:11
4
作者 王享 黄新波 朱永灿 《西安工程大学学报》 CAS 2019年第2期154-160,共7页
对变压器进行智能化故障诊断是促进智能电网发展的主要环节,但传统的单一智能诊断算法不能对变压器的大量不完备信息进行有效处理,导致故障诊断精度不高。为此,给出一种基于粒子群混合改进灰狼算法(PSO-IGWO)优化混合核极限学习机(KELM,... 对变压器进行智能化故障诊断是促进智能电网发展的主要环节,但传统的单一智能诊断算法不能对变压器的大量不完备信息进行有效处理,导致故障诊断精度不高。为此,给出一种基于粒子群混合改进灰狼算法(PSO-IGWO)优化混合核极限学习机(KELM,kernal extreme learning machine)的变压器故障诊断方法。通过混合KELM建立故障诊断模型,采用粒子群算法对混合KELM的结构参数进行寻优,利用改进灰狼算法在局部和全局之间良好的平衡能力改善粒子群算法的缺陷,结合油中溶解气体分析(DGA,dissolved gas analysis)样本数据进行仿真实验。结果表明,相对于BPNN,ELM算法,诊断准确率分别提高了16.24%,5.71%,能够为变压器的安全稳定运行提供决策支持。 展开更多
关键词 变压器 故障诊断 粒子群优化 灰狼优化 混合极限学习机 智能电网
下载PDF
多策略改进MPA算法与HKELM的变压器故障辨识 被引量:6
5
作者 谢国民 刘东阳 刘明 《电子测量与仪器学报》 CSCD 北大核心 2023年第4期172-182,共11页
为解决目前变压器故障诊断精度低的问题,提出一种多策略改进海洋捕食者算法(MPA)与混合核极限学习机(HKELM)的变压器故障辨识方法。首先通过核主成分分析法(KPCA)对高维线性不可分的变压器故障数据进行降维,获取特征支持数据;然后通过... 为解决目前变压器故障诊断精度低的问题,提出一种多策略改进海洋捕食者算法(MPA)与混合核极限学习机(HKELM)的变压器故障辨识方法。首先通过核主成分分析法(KPCA)对高维线性不可分的变压器故障数据进行降维,获取特征支持数据;然后通过伯努利混沌映射、改进阶段转换判据、最佳候选者等策略综合改进MPA,加强全局开发能力;最后使用改进的IMPA算法对HKELM的参数寻优,构建变压器故障诊断模型。为验证模型有效性,分析比较常用算法优化的HKELM的4种变压器故障诊断模型。其中IMPA-HKELM的诊断精度为94.7%,相比于另外3种基础算法优化的模型,诊断精度分别提升了5.4%、8%、10.7%。结果表明,提出模型有效提升了故障诊断的分类性能,并实现了较高的故障诊断精度。 展开更多
关键词 故障诊断 油浸式变压器 伯努利混沌映射 混合极限学习机 核主成分分析
下载PDF
基于GSA与DE优化混合核ELM的网络异常检测模型 被引量:9
6
作者 生龙 袁丽娜 +1 位作者 武南南 姬少培 《计算机工程》 CAS CSCD 北大核心 2022年第6期146-153,共8页
为了增强网络入侵检测模型的准确率与泛化性,提出一种基于引力搜索算法(GSA)与差分进化(DE)算法优化混合核极限学习机(ELM)的网络入侵检测模型。该模型针对采用单个核函数的ELM模型存在的泛化能力弱、学习能力差的问题,结合多项式核函... 为了增强网络入侵检测模型的准确率与泛化性,提出一种基于引力搜索算法(GSA)与差分进化(DE)算法优化混合核极限学习机(ELM)的网络入侵检测模型。该模型针对采用单个核函数的ELM模型存在的泛化能力弱、学习能力差的问题,结合多项式核函数和径向基函数的优点,构建混合核ELM模型(HKELM),将GSA和DE相结合优化HKELM模型参数,从而提高其在异常检测过程中的全局和局部优化能力,在此基础上利用核主成分分析算法进行入侵检测数据的数据降维和特征抽取,构建网络入侵检测模型KPCA-GSADE-HKELM。在KDD99数据集上的实验结果表明,与KDDwinner、CSVAC、CPSO-SVM、Dendron等模型进行对比,KPCA-GSADE-HKELM模型具有更高的检测精度和更快的检测速度。 展开更多
关键词 网络入侵检测 异常检测 引力搜索算法 差分进化算法 混合极限学习机 检测精度
下载PDF
基于IWOA-HKELM的矿井突水水源识别 被引量:9
7
作者 邵良杉 詹小凡 《中国安全科学学报》 CAS CSCD 北大核心 2019年第9期113-118,共6页
为提高矿井突水水源识别的精度,提出一种改进鲸鱼优化算法(IWOA)-混合核极限学习机(HKELM)的水源识别模型。首先将高斯核函数和多项式核函数相结合,构造学习能力和泛化性能较好的HKELM;然后针对鲸鱼优化算法(WOA)易陷入局部最优的问题,... 为提高矿井突水水源识别的精度,提出一种改进鲸鱼优化算法(IWOA)-混合核极限学习机(HKELM)的水源识别模型。首先将高斯核函数和多项式核函数相结合,构造学习能力和泛化性能较好的HKELM;然后针对鲸鱼优化算法(WOA)易陷入局部最优的问题,提出IWOA算法,引入帐篷映射、改进非线性因子以及设置反向精英学习阈值等3种策略来降低算法过早收敛的概率,并得到更优结果;最后将新庄孜矿的突水水源资料作为仿真数据,降维处理后输入到IWOA-HKELM模型中结果预测。研究表明:通过IWOA优化HKELM参数,可提高HKELM的整体预测性能;IWOA-HKELM的预测结果与实际情况完全一致,与其他模型相比,该模型的平均分类准确率明显提高,平均均方误差和分类准确率标准差明显降低。 展开更多
关键词 突水水源识别 改进鲸鱼优化算法(IWOA) 混合极限学习机(HKELM)
下载PDF
联合局部二值模式的高光谱影像空-谱分类方法 被引量:7
8
作者 职露 余旭初 付琼莹 《测绘科学技术学报》 CSCD 北大核心 2018年第1期65-69,76,共6页
为充分利用高光谱影像"图谱合一"的特性,提出了一种联合局部二值模式的高光谱影像空-谱分类方法。该方法通过局部二值模式从降维影像中提取空间纹理特征,以线性加权求和核为多核组合方式,与原始光谱特征结合构造混合核极限学... 为充分利用高光谱影像"图谱合一"的特性,提出了一种联合局部二值模式的高光谱影像空-谱分类方法。该方法通过局部二值模式从降维影像中提取空间纹理特征,以线性加权求和核为多核组合方式,与原始光谱特征结合构造混合核极限学习机模型,实现影像的地物分类。为了验证该方法的有效性,利用Indiana和Pavia U两组高光谱影像数据进行实验,总体分类精度分别达到99.23%和94.95%。结果表明该方法分类效果优于纯光谱分类、纯局部二值模式空间分类、GLCM空-谱分类以及3Gabor空-谱分类方法,有效地改善了高光谱影像分类结果,获得更加平滑的分类结果图。 展开更多
关键词 高光谱影像 空间纹理特征 局部二值模式 混合极限学习机 空-谱分类
下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:1
9
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合极限学习机 超参数优化
下载PDF
机构动作可靠性估计的自适应极值响应面法
10
作者 文浩 侯保林 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期581-589,共9页
针对存在随机-区间混合不确定性的机构动作可靠性估计问题,本文提出了一种基于自适应极值响应面的高效计算方法,将其转化为随机不确定性下的动作可靠度上下界求解问题。使用麻雀搜索算法优化的混合核极限学习机构建从混合不确定性变量... 针对存在随机-区间混合不确定性的机构动作可靠性估计问题,本文提出了一种基于自适应极值响应面的高效计算方法,将其转化为随机不确定性下的动作可靠度上下界求解问题。使用麻雀搜索算法优化的混合核极限学习机构建从混合不确定性变量到极限状态函数响应值的初始响应面和从随机变量到极限状态函数响应极值的极值响应面;利用结合主动学习与反向学习的自适应加点策略选取极限状态曲面附近的样本点更新极值响应面以提高其精度与效率;最后结合极值响应面和蒙特卡罗仿真算得到动作可靠度上下界的近似解。通过数值案例和回转链式输送机的工程案例对所提自适应极值响应面方法的高效性与准确性进行了验证,为随机-区间混合不确定性下的机构动作可靠性估计提供了一种参考。 展开更多
关键词 动作可靠性 混合不确定性 极值响应面 自适应加点策略 混合极限学习机 麻雀搜索算法 主动学习 反向学习
下载PDF
基于差分进化改进混合核极限学习机的指纹定位
11
作者 韦嘉恒 刘伟 +2 位作者 李卓 刘博 王智豪 《中国科技论文》 CAS 2024年第5期600-606,共7页
针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动... 针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动态控制参数法避免差分进化算法陷入局部最优,然后通过改进差分进化算法自适应调整混合核极限学习机的参数,提高训练效率。在线阶段,利用混合核函数提高极限学习机的学习性能和泛化性能,并引入L1惩罚函数防止过拟合。其泛化能力相较于单一核极限学习机提升明显。该方法有92%的测试点定位误差小于0.5 m,平均误差相较于加权K近邻法(weighted Knearest neighbor,WKNN)降低了32.6%。 展开更多
关键词 混合极限学习机 LOGISTIC混沌映射 差分进化算法 指纹定位
下载PDF
基于VMD-SSA-HKELM的短期光伏功率预测
12
作者 杨荔强 崔双喜 《电源技术》 CAS 北大核心 2024年第6期1154-1159,共6页
为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量... 为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量;以平方欧氏距离作为衡量样本相似性的依据,筛选出不同天气类型下的最优训练样本。为降低数据的非平稳性,利用VMD将原始光伏功率数据分解为一系列不同带宽的模态分量,对各模态分量分别建立HKELM模型,通过引入SSA算法对HKELM模型进行参数寻优。将各模态分量的预测结果进行求和重构,得到光伏功率预测结果。仿真结果表明,相比于反向传播神经网络(BPNN)、极限学习机(ELM)、核极限学习机(VMDKELM)和混合核极限学习机(VMD-HKELM)模型,VMD-SSA-HKELM模型具有更高的预测精度,验证了本文模型的精确性和有效性。 展开更多
关键词 光伏功率预测 混合极限学习机 变分模态分解 麻雀搜索算法
下载PDF
改进北方苍鹰算法在光伏阵列中应用研究 被引量:2
13
作者 李斌 郭自强 高鹏 《电子测量与仪器学报》 CSCD 北大核心 2023年第7期131-139,共9页
针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法(INGO),并应用于光伏阵列故障诊断。首先,利用Circle映射、自适应权重因子和Levy飞行策略改进了北方苍鹰优化算法,结合高斯检测机制和混合核... 针对北方苍鹰优化算法(NGO)存在收敛精度低和易陷入局部最优等问题,提出一种改进北方苍鹰算法(INGO),并应用于光伏阵列故障诊断。首先,利用Circle映射、自适应权重因子和Levy飞行策略改进了北方苍鹰优化算法,结合高斯检测机制和混合核极限学习机(HKELM)搭建INGO-HKELM故障诊断模型。其次,将INGO算法与NGO、粒子群算法(PSO)、鲸鱼算法(WOA)在测试函数上进行比较,表明在寻优能力、稳定性等方面具有优越性。然后,分析不同运行状态下光伏阵列运行特征,提出一种5维故障特征向量,作为数据的输入。最后,将4种算法分别对HKELM的核参数进行优化并实现故障分类。结果表明,所提方法能够准确地检测出光伏组件发生的异常状态,INGO-HKELM模型准确率达到93.74%,验证了所提算法的有效性和可行性。 展开更多
关键词 改进北方苍鹰算法 光伏阵列 故障诊断 混合极限学习机
下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测
14
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合极限学习机 小波包变换 超参数优化
下载PDF
基于PSO-HKELM的内部交易识别
15
作者 邢蕾 刘艳彩 《长春工业大学学报》 CAS 2024年第3期282-288,共7页
对于证券市场出现的内部交易问题,收集了2018-2022年中国证监会公布的对内部交易惩罚的公司股票数据作为样本,从我国证券市场表现、财务表现、股权结构以及治理体系三个方面选择相关指标,提出一种粒子群优化混合核极限学习机(HKELM)的算... 对于证券市场出现的内部交易问题,收集了2018-2022年中国证监会公布的对内部交易惩罚的公司股票数据作为样本,从我国证券市场表现、财务表现、股权结构以及治理体系三个方面选择相关指标,提出一种粒子群优化混合核极限学习机(HKELM)的算法,建立相应的内部交易行为识别模型。实验结果表明,提出的PSO-HKELM模型效果较好,平均准确率为79.68%,比HKELM、ELM、RF分别高4.27%、6.32%、11.22%,可以看出,粒子群对HKELM进行了有效优化,提高了识别效率,在时间窗口期为90 d时结果最佳且稳定。有助于监管部门准确把握发生的内部交易行为,进一步提高内部交易识别能力。 展开更多
关键词 内部交易 粒子群 混合极限学习机 行为识别
下载PDF
基于IAO优化HKELM的空气质量指数预测 被引量:2
16
作者 周韦 孙宪坤 万俊杰 《智能计算机与应用》 2023年第6期50-56,66,共8页
为了精准预测空气质量指数(AQI),本文提出一种基于改进天鹰优化器(IAO)混合核极限学习机(HKELM)的空气质量指数预测模型(IAO-HKELM)。首先,利用径向基核函数和多项式核函数构造混合核极限学习机模型;其次,针对天鹰优化器(AO)算法易陷入... 为了精准预测空气质量指数(AQI),本文提出一种基于改进天鹰优化器(IAO)混合核极限学习机(HKELM)的空气质量指数预测模型(IAO-HKELM)。首先,利用径向基核函数和多项式核函数构造混合核极限学习机模型;其次,针对天鹰优化器(AO)算法易陷入局部极值的问题,引入改进的Tent混沌初始化策略和自适应t分布策略;采用改进后的AO算法对HKELM模型的参数进行优化,并建立IAO-HKELM空气质量指数预测模型;最后,将预测模型应用于实际案例中,并与其他模型的预测结果及误差进行对比。结果表明,本文提出的预测模型精度更高、稳定性更强。 展开更多
关键词 空气质量指数预测 混合极限学习机 天鹰优化器 自适应t分布
下载PDF
基于AdaBoost-WOA-HKELM的下肢关节角度预测
17
作者 李花宁 吴生彪 +2 位作者 冯丽 刘瑾 熊书慧 《机电工程技术》 2024年第4期36-40,共5页
针对当前下肢连续运动预测精度低的问题,提出一种基于AdaBoost-WOA-HKELM的下肢髋、膝关节角度预测方法。采集人体正常行走状态下的下肢表面肌电信号和关节角度信息,对预处理后的表面肌电信号进行特征提取,并结合关节角度信息建立特征... 针对当前下肢连续运动预测精度低的问题,提出一种基于AdaBoost-WOA-HKELM的下肢髋、膝关节角度预测方法。采集人体正常行走状态下的下肢表面肌电信号和关节角度信息,对预处理后的表面肌电信号进行特征提取,并结合关节角度信息建立特征数据集;选用混合核极限学习机(HKELM)模型作为弱学习器,引入鲸鱼优化算法(WOA)对HKELM模型参数进行优化,通过AdaBoost集成学习算法将弱学习器训练为强学习器,建立AdaBoost-WOA-HKELM关节角度预测模型,利用特征数据集对Ada⁃Boost-WOA-HKELM模型进行训练、测试,并与HKELM、WOA-HKELM模型进行髋、膝关节角度预测的仿真对比实验。结果表明:AdaBoost-WOA-HKELM模型在髋关节和膝关节角度预测方面表现出色,其均方误差分别仅为2.0869和2.2849,而决定系数分别达到了0.9882和0.9887。以上指标明显优于其他2种模型,突显了AdaBoost-WOA-HKELM模型在精确预测下肢关节角度方面的卓越性能。决定系数接近1的结果表明模型对实际数据的拟合程度极高,进一步验证了AdaBoost-WOA-HKELM模型的有效性和准确性。 展开更多
关键词 肌电信号 混合极限学习机 ADABOOST WOA 下肢关节角度预测
下载PDF
基于ICEEMDAN多尺度熵与NGO-HKELM的转子故障诊断
18
作者 陆水 李振鹏 +2 位作者 李军 颜东梅 黄福川 《组合机床与自动化加工技术》 北大核心 2024年第4期175-180,共6页
针对电机转子故障信号非平稳、敏感的故障特征不能有效提取,传统分类器参数智能优化算法存在优化速度慢、调整参数多、易陷入局部最优等问题提出基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断方法。首先,采用改进的自适应噪声完... 针对电机转子故障信号非平稳、敏感的故障特征不能有效提取,传统分类器参数智能优化算法存在优化速度慢、调整参数多、易陷入局部最优等问题提出基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断方法。首先,采用改进的自适应噪声完全集合经验模态分解(improved complete empirical mode decomposition with adaptive noise,ICEEMDAN)方法对转子振动信号进行分解和重构;计算重构信号的多尺度样本熵(multiscale sample entropy,MSE),形成特征向量,通过核主成分分析(kernel principal component analysis,KPCA)方法对高维的特征向量进行降维;最后,将降维后的特征向量输入北方苍鹰算法(northern goshawk optimization,NGO)优化的混合核极限学习机(hybrid extreme learning machine,HKELM)进行转子故障分类。研究结果表明,基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断模型,平均识别准确率可达97.7273%,平均寻优时间为1.0681 s,收敛速度快、准确率高以及分类效果好。 展开更多
关键词 改进的ICEEMDAN 多尺度样本熵 北方苍鹰算法 混合极限学习机 转子故障诊断
下载PDF
基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱预测研究
19
作者 任宝峰 祁卫国 +2 位作者 肖占云 撒兴涛 贾然 《承德石油高等专科学校学报》 CAS 2024年第3期9-13,共5页
为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化... 为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化,使其不仅有良好的局部搜索能力,同时也加强了全局搜索能力。将该方法应用于某品牌的真伪卷烟预测,试验结果表明:该模型拥有更好的预测精度,为真伪卷烟拉曼光谱预测提供了一种新思路。 展开更多
关键词 卷烟 真伪鉴别 拉曼光谱 混合极限学习机 贝叶斯优化
下载PDF
基于改进混合核极限学习机的坝基注浆量预测代理模型研究 被引量:6
20
作者 石祖智 常峻 +3 位作者 吴斌平 佟大威 郭辉 乔天诚 《水利水电技术(中英文)》 北大核心 2021年第9期57-66,共10页
注浆量是反映灌浆施工质量的重要指标之一。目前基于机器学习的注浆量预测方法缺乏对裂隙倾向、倾角等参数的全面考虑。裂隙灌浆模拟具有能够综合考虑地质、设计、施工等因素影响的优势,然而面临裂隙参数小样本、计算效率低下的不足。... 注浆量是反映灌浆施工质量的重要指标之一。目前基于机器学习的注浆量预测方法缺乏对裂隙倾向、倾角等参数的全面考虑。裂隙灌浆模拟具有能够综合考虑地质、设计、施工等因素影响的优势,然而面临裂隙参数小样本、计算效率低下的不足。针对上述问题,提出基于改进混合核极限学习机(ICSO-MKELM)的注浆量预测代理模型。主要包括:(1)提出基于改进bootstrap方法的三维随机裂隙网络模型建模方法,解决裂隙数据小样本问题,并结合离散元方法开展灌浆数值模拟研究;(2)建立基于改进混合核极限学习机的注浆量预测代理模型,采用改进的鸡群算法优化混合核极限学习机的参数选择,克服混合核极限学习机参数选择效率不高、且难以有效选择全局最优参数的不足。通过将建立的代理模型应用于某工程坝基帷幕灌浆的注浆量预测,并与基于RBF-KELM单核极限学习机模型、Poly-KELM单核极限学习机模型、BP神经网络模型的注浆量预测结果对比,验证了本文所提方法的优越性。 展开更多
关键词 注浆量预测 代理模型 改进bootstrap方法 三维随机裂隙网络 离散元数值模拟 混合极限学习机 改进的鸡群算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部