期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度集成网络模型的膝关节退行性病变分级诊断方法 被引量:1
1
作者 宋江玲 郑田田 张瑞 《纯粹数学与应用数学》 2022年第3期309-321,共13页
膝关节退行性病变(knee osteoarthritis,KOA)是一种由关节软骨纤维化等引发的进展性膝关节疾病.病情发展大致可分为轻度与重度两个阶段,若能对其进行有效追踪,则可根据严重程度及时采取相应的防控措施,这对于提高患者生存质量有着重要... 膝关节退行性病变(knee osteoarthritis,KOA)是一种由关节软骨纤维化等引发的进展性膝关节疾病.病情发展大致可分为轻度与重度两个阶段,若能对其进行有效追踪,则可根据严重程度及时采取相应的防控措施,这对于提高患者生存质量有着重要临床意义.本文将这一过程称之为KOA分级诊断.相比传统的KOA诊断方法(CT,MRI等),骨振信号(Vibroarthrographic signal,VAG)有着无创无害,成本低廉,可便捷使用等优点,是近年来临床中正在探索的一种全新的KOA检查手段.然而,目前关于VAG信号的理论研究尚不充分,临床可提供的指导信息十分有限.基于此,本文以VAG信号为主要数据源,同时融入患者的生理信息,开展关于KOA分级诊断的辅助诊断方法研究.首先,在卷积神经网络框架下,构建了用于分析VAG信号的网络模块VAG-CNN-Block;其次,在前馈神经网络框架下,构建了用于分析生理信息的网络模块PI-FNN-Block;进而,结合VAG-CNN-Block和PI-FNN-Block,采用注意力机制设计了一种深度集成网络模型MBE-Net,并据此提出了KOA的分级诊断方法,用以实现正常受试者,轻度,重度KOA患者的自动识别.最后,采用西安市某两所医院的临床数据对所提方法进行验证.数值实验表明所提方法的准确率,灵敏度,特异度分别可达87.5%,87.2%与93.6%. 展开更多
关键词 膝关节退行性病变 分级诊断 骨振信号 深度集成网络模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部