期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
深度度量学习综述 被引量:12
1
作者 刘冰 李瑞麟 封举富 《智能系统学报》 CSCD 北大核心 2019年第6期1064-1072,共9页
深度度量学习已成为近年来机器学习最具吸引力的研究领域之一,如何有效的度量物体间的相似性成为问题的关键。现有的依赖成对或成三元组的损失函数,由于正负样本可组合的数量极多,因此一种合理的解决方案是仅对训练有意义的正负样本采样... 深度度量学习已成为近年来机器学习最具吸引力的研究领域之一,如何有效的度量物体间的相似性成为问题的关键。现有的依赖成对或成三元组的损失函数,由于正负样本可组合的数量极多,因此一种合理的解决方案是仅对训练有意义的正负样本采样,也称为“难例挖掘”。为减轻挖掘有意义样本时的计算复杂度,代理损失设置了数量远远小于样本集合的代理点集。该综述按照时间顺序,总结了深度度量学习领域比较有代表性的算法,并探讨了其与softmax分类的联系,发现两条看似平行的研究思路,实则背后有着一致的思想。进而文章探索了许多致力于提升softmax判别性能的改进算法,并将其引入到度量学习中,从而进一步缩小类内距离、扩大类间距,提高算法的判别性能。 展开更多
关键词 深度度量学习 深度学习 机器学习 对比损失 三元组损失 代理损失 softmax分类 温度值
下载PDF
面向电力生产精细化风险解译的高度相似防护工具智能检测技术研究 被引量:2
2
作者 马富齐 王波 +2 位作者 董旭柱 冯磊 贾嵘 《中国电机工程学报》 EI CSCD 北大核心 2024年第3期971-980,I0010,共11页
电力生产通常面临高低电压、强弱电流等复杂工作环境转换,不同作业场景有严格的防护工具使用标准,因此,研究生产作业过程防护工具的精细辨识对保障人员安全及电网安全意义重大。已有研究可实现安全帽、工作服等基础着装类检测,而实际生... 电力生产通常面临高低电压、强弱电流等复杂工作环境转换,不同作业场景有严格的防护工具使用标准,因此,研究生产作业过程防护工具的精细辨识对保障人员安全及电网安全意义重大。已有研究可实现安全帽、工作服等基础着装类检测,而实际生产中存在大量形态高度相似的实体防护工具,如绝缘手套与线手套、绝缘杆与验电杆等。为此,该文提出一种基于深度代表性度量学习的相似防护工具智能检测方法。将目标类别特征学习转换为以差异化表达不同目标特征距离为目的的嵌入式空间特征学习,得到表征不同目标的深度代表性特征向量,通过计算未知目标与代表性特征向量的距离进行类别判断,最后以现场图像进行试验验证。试验结果表明:所提方法实现了对形态相似防护工具的特征差异表达和精准辨识,相比于常见目标检测模型具有更优越的辨识性能,从而提高电力生产安全风险辨识的精细化水平。 展开更多
关键词 生产安全防护 安全影像解译 电力深度视觉 高度相似目标 深度度量学习 嵌入特征空间
下载PDF
基于跨模态深度度量学习的甲骨文字识别 被引量:8
3
作者 张颐康 张恒 +1 位作者 刘永革 刘成林 《自动化学报》 EI CAS CSCD 北大核心 2021年第4期791-800,共10页
甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类.拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像,临摹甲骨文字图像是经过专家手工书写得到的高清图像.拓片甲骨文字样本难以获得,而临摹文字样本相对容易获得.为了提... 甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类.拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像,临摹甲骨文字图像是经过专家手工书写得到的高清图像.拓片甲骨文字样本难以获得,而临摹文字样本相对容易获得.为了提高拓片甲骨文字识别的性能,本文提出一种基于跨模态深度度量学习的甲骨文字识别方法,通过对临摹甲骨文字和拓片甲骨文字进行共享特征空间建模和最近邻分类,实现了拓片甲骨文字的跨模态识别.实验结果表明,在拓片甲骨文字识别任务上,本文提出的跨模态学习方法比单模态方法有明显的提升,同时对新类别拓片甲骨文字也能增量识别. 展开更多
关键词 甲骨文字识别 深度度量学习 最近邻分类 跨模态学习
下载PDF
一种基于Triplet loss的齿轮箱复合故障识别方法 被引量:8
4
作者 赵晓平 王逸飞 +2 位作者 张永宏 吴家新 王丽华 《振动与冲击》 EI CSCD 北大核心 2021年第5期46-54,共9页
随着设备检测点的数量与采样频率的增加,机械健康监测进入了"大数据"时代。深度学习以其强大的自适应特征提取和分类能力也在机械大数据处理方面取得了丰硕的成果。在故障诊断领域,目前深度学习方法的研究对象均集中于单一故... 随着设备检测点的数量与采样频率的增加,机械健康监测进入了"大数据"时代。深度学习以其强大的自适应特征提取和分类能力也在机械大数据处理方面取得了丰硕的成果。在故障诊断领域,目前深度学习方法的研究对象均集中于单一故障,而复合故障却鲜有人涉足。复合故障因为其各类故障信号间有耦合,变化的工况(负载,转速)也会对信号产生较大影响,所以难以准确诊断。面对复杂的复合故障,传统的Softmax分类器已不能精确高效的完成故障诊断。提出了一种基于Triplet loss的深度度量学习模型的诊断方法,对齿轮箱的轴承及齿轮这两种目标的故障同时进行诊断。其优势在于通过该模型提取故障信号的特征,再利用Triplet loss度量各类故障之间的距离,使得同类故障特征间的距离很近,异类故障特征间的距离很远,从而高效完成诊断任务。试验结果表明,该方法实现了在多种工况,大量样本下对齿轮箱内轴承和齿轮不同故障的准确诊断。 展开更多
关键词 机械故障诊断 深度度量学习 齿轮箱 轴承 齿轮
下载PDF
基于深度度量学习的轴承故障诊断方法 被引量:7
5
作者 李小娟 徐增丙 +2 位作者 熊文 王志刚 谭俊杰 《振动与冲击》 EI CSCD 北大核心 2020年第15期25-31,共7页
针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fish... 针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fisher Analysis, MFA)方法进行了优选,在构建的深度度量网络(Deep Metric Network, DMN)顶层特征输出层添加BPNN(Back Propagation Neural Network, BPNN)分类器对网络参数进行微调,并实现故障的分类识别。通过对不同类型和严重程度的轴承故障进行了诊断分析,验证了该方法可以有效地对轴承故障进行高精度诊断,效果优于传统深度信念网络(Deep Belief Network, DBN)故障诊断方法以及常用时域统计特征结合支持向量机(Support Vector Machine, SVM)分类的故障诊断方法。 展开更多
关键词 深度度量学习 轴承 故障诊断 相似度
下载PDF
基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法
6
作者 杨胜楠 赵建敏 +1 位作者 杨梅 赵宇飞 《黑龙江畜牧兽医》 CAS 北大核心 2024年第4期36-42,共7页
为了实现精准畜牧业生产及畜牧业保险理赔中牛只身份的准确识别,试验提出了基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法,即采用深度卷积神经网络(deep convolutional neural networks,DCNNs)模型提取特征,利用去偏置项SoftMa... 为了实现精准畜牧业生产及畜牧业保险理赔中牛只身份的准确识别,试验提出了基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法,即采用深度卷积神经网络(deep convolutional neural networks,DCNNs)模型提取特征,利用去偏置项SoftMax损失函数优化特征空间中的特征分布,提高特征线性可分辨性,解决特征归一化后在投影超平面上的重叠问题;采用紧致度量损失函数结合去偏置项SoftMax损失函数联合监督模型训练,使同类特征与类内特征的平均距离最小化,提高特征聚类的紧凑性和可辨识性,同时兼顾了类内样本分布的多样性;最后试验将本算法(去偏置项SoftMax和紧致度量损失函数联合监督算法)与ArcFace损失函数、标准SoftMax损失函数、去偏置项SoftMax损失函数、标准SoftMax损失函数结合紧致度量损失函数进行了性能对分分析。结果表明:本算法的识别准确率在所有模型中最高,为97.61%;且能对高相似度牛脸正确识别。说明基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法可满足牧场牛只身份识别要求。 展开更多
关键词 深度度量学习 身份识别 牛脸识别 去偏置项SoftMax损失函数 紧致度量损失函数 深度卷积神经网络
原文传递
基于IDACL深度度量学习的零件表面缺陷检测
7
作者 李可 储世伟 +2 位作者 顾杰斐 宿磊 薛志钢 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期32-38,共7页
针对深度度量学习模型应用于机械零件表面缺陷检测存在易受噪声标签干扰、训练时间长、分类精度不高等问题,提出了一种基于改进深度注意中心损失(IDACL)的深度度量学习方法.首先,用O2U-Net模型对样本数据进行清洗,减少噪声样本对模型训... 针对深度度量学习模型应用于机械零件表面缺陷检测存在易受噪声标签干扰、训练时间长、分类精度不高等问题,提出了一种基于改进深度注意中心损失(IDACL)的深度度量学习方法.首先,用O2U-Net模型对样本数据进行清洗,减少噪声样本对模型训练的影响;然后,将O2U-Net模型参数迁移至深度度量学习模型,并提取各类样本中心作为深度注意中心损失的初始类中心;最后,根据样本点与类中心的距离设置权重以优化损失函数,提高模型的分类精度.中间壳体零件表面缺陷的实验结果表明,提出的方法相较其他方法具有更快的训练速度和更高的检测精度. 展开更多
关键词 表面缺陷检测 深度度量学习 深度注意中心损失 O2U-Net模型 机械零件
原文传递
基于深度度量学习的强泛化开关仪表识别算法
8
作者 冯天任 陈世峰 《集成技术》 2024年第5期30-39,共10页
针对电厂开关检测方法无法应对现实开集环境,对稀有类别识别准确率低的现状,将目标识别问题转化为相似性度量问题,并提出新算法。新算法基于深度度量学习的三元组网络,利用加入SE Block的ResNet-18提取特征,并利用跨批次挖掘增强学习效... 针对电厂开关检测方法无法应对现实开集环境,对稀有类别识别准确率低的现状,将目标识别问题转化为相似性度量问题,并提出新算法。新算法基于深度度量学习的三元组网络,利用加入SE Block的ResNet-18提取特征,并利用跨批次挖掘增强学习效果。为评估算法性能,创建了一个包含3300张开关图片的数据集,并使用新算法在该数据集上进行了闭集测试、开集测试、小样本测试。结果表明:新算法在闭集状态下具有良好的区分能力,不仅能准确识别训练集中的类别,还能有效区分训练时未遇到的及出现频率较低的状态。由此表明,该算法不仅适用于现实世界的开集环境,而且能显著提升对小样本数据的识别精度。 展开更多
关键词 深度度量学习 三元组网络 注意力机制 开关状态识别
下载PDF
基于深度度量学习的足迹图像检索算法 被引量:2
9
作者 朱明 江畅 +3 位作者 于小勇 殷克华 唐俊 王年 《刑事技术》 2023年第3期283-291,共9页
针对赤足迹光学图像相似度高,传统算法无法快速提取样本有效信息的问题,提出了一种基于深度度量学习的赤足迹图像检索算法,该算法使用多尺度特征融合结构构建主干网络并辅以批去除结构监督学习,同时在嵌入空间内构建动态难样本三元组,... 针对赤足迹光学图像相似度高,传统算法无法快速提取样本有效信息的问题,提出了一种基于深度度量学习的赤足迹图像检索算法,该算法使用多尺度特征融合结构构建主干网络并辅以批去除结构监督学习,同时在嵌入空间内构建动态难样本三元组,解决传统难样本三元组挖掘方式不合理的问题。构建了一个包含250人、2 500枚的赤足迹光学图像数据集,该算法在所构建的数据集上平均检索精度达到88.86%,高于传统难样本三元组算法,可有效地应用于赤足迹光学图像检索。该算法对于足迹领域的自动化识别具有积极意义。 展开更多
关键词 深度度量学习 赤足迹图像检索 多尺度特征融合 嵌入空间 动态难样本三元组
下载PDF
基于孪生网络与多重通道融合的脱机笔迹鉴别
10
作者 林超群 王大寒 +4 位作者 肖顺鑫 池雪可 王驰明 张煦尧 朱顺痣 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1660-1670,共11页
脱机签名验证模型因其具有判断签名是否伪造的能力而备受关注.当今大多数脱机签名验证模型可分为深度度量学习方法和双通道判别方法.大部分深度度量学习方法利用孪生网络生成每张图片的细节特征向量,采用欧氏距离法判断相似度,但是欧氏... 脱机签名验证模型因其具有判断签名是否伪造的能力而备受关注.当今大多数脱机签名验证模型可分为深度度量学习方法和双通道判别方法.大部分深度度量学习方法利用孪生网络生成每张图片的细节特征向量,采用欧氏距离法判断相似度,但是欧氏距离仅考虑两个点之间的绝对距离,而容易忽视点的方向、缩放的信息,不会考虑数据之间的相关性,因此无法捕获特征向量内部之间的关系;而双通道判别方法在网络训练前就进行特征的判别,更能判断不同图像的相似性,但此时图像的细节特征不够清晰,大量特征丢失.针对双通道判别方法中特征消失过多的问题,提出了一种面向独立于书写者场景的手写签名离线验证模型MCFFN(Multi-channel feature fusion network).在CEDAR、BHSig-B、BHSig-H和ChiSig四个不同语言的签名数据集上测试了所提出的方法,实验证明了所提方法的优势和潜力. 展开更多
关键词 脱机手写签名验证 深度度量学习 孪生网络 通道融合 ACMix
下载PDF
基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测
11
作者 孟飞 徐增丙 王志刚 《农业装备与车辆工程》 2024年第1期157-161,共5页
针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对... 针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对特征进行约简,构建一维健康因子(HI);再结合长短时记忆网络(LSTM)模型,通过迁移策略利用共享隐含层的方法对目标夹送辊进行预测分析。实验验证,经过深度迁移学习的LSTM模型预测效果更好,对夹送辊设备的健康状态评估及剩余使用寿命预测具有一定的指导意义。 展开更多
关键词 夹送辊 寿命预测 Yu范数 深度度量学习 共享隐含层迁移
下载PDF
基于深度度量学习的异常流量检测方法
12
作者 张强 何俊江 +1 位作者 李汶珊 李涛 《信息网络安全》 CSCD 北大核心 2024年第3期462-472,共11页
网络异常流量识别是目前网络安全的重要任务之一。然而传统流量分类模型是依据流量数据训练得到,由于大部分流量数据分布不均导致分类边界模糊,极大限制了模型的分类性能。为解决上述问题,文章提出一种基于深度度量学习的异常流量检测... 网络异常流量识别是目前网络安全的重要任务之一。然而传统流量分类模型是依据流量数据训练得到,由于大部分流量数据分布不均导致分类边界模糊,极大限制了模型的分类性能。为解决上述问题,文章提出一种基于深度度量学习的异常流量检测方法。首先,与传统深度度量学习每个类别单一代理的算法不同,文章设计双代理机制,通过目标代理指引更新代理的优化方向,提升模型的训练效率,增强同类别流量数据的聚集能力和不同类别流量数据的分离能力,实现最小化类内距离和最大化类间距离,使数据的分类边界更清晰;然后,搭建基于1D-CNN和Bi-LSTM的神经网络,分别从空间和时间的角度高效提取流量特征。实验结果表明,NSL-KDD流量数据经过模型处理,其类内距离显著减小并且类间距离显著增大,类内距离相比原始类内距离减小了73.5%,类间距离相比原始类间距离增加了52.7%,且将文章搭建的神经网络比广泛使用的深度残差网络训练时间更短、效果更好。将文章所提模型应用在流量分类任务中,在NSL-KDD和CICIDS2017数据集上,相比传统的流量分类算法,其分类效果更好。 展开更多
关键词 深度度量学习 异常流量检测 流量数据分布 神经网络
下载PDF
基于深度度量学习的有源欺骗干扰快速识别算法
13
作者 温镇铭 王国宏 +1 位作者 于洪波 熊振宇 《中国电子科学研究院学报》 2024年第4期307-314,339,共9页
干扰的精准识别是实现干扰抑制的关键前提,但在实际有源欺骗干扰的识别过程中,形态相近的单一干扰易混淆、复合干扰识别准确率不高的问题较为突出。为解决这一问题,文中提出基于深度度量学习的有源欺骗干扰快速识别算法。方法以干扰信... 干扰的精准识别是实现干扰抑制的关键前提,但在实际有源欺骗干扰的识别过程中,形态相近的单一干扰易混淆、复合干扰识别准确率不高的问题较为突出。为解决这一问题,文中提出基于深度度量学习的有源欺骗干扰快速识别算法。方法以干扰信号的平滑伪Wigner-Ville分布(Smoothed Pseudo-Wigner-Ville Distribution,SPWVD)作为时频特征样本训练深度度量学习网络,并通过哈希算法和“交叉熵损失函数—三元组损失函数—中心损失函数”的联合约束优化图像特征,以增强深度度量学习网络对时频分布中细微差异的甄别能力。仿真实验表明,经训练后的深度度量学习网络可快速、准确识别八种单一干扰和三种复合干扰,平均识别准确率达到99.36%,且在样本数量较少的情况下依然保持良好性能。 展开更多
关键词 有源欺骗干扰 干扰识别 深度度量学习 损失函数 时频分布
下载PDF
一种基于深度度量学习的视频分类方法 被引量:5
14
作者 智洪欣 于洪涛 +2 位作者 李邵梅 高超 王艳川 《电子与信息学报》 EI CSCD 北大核心 2018年第11期2562-2569,共8页
针对视频分类中普遍面临的类内离散度和类间相似性较大而制约分类性能的问题,该文提出一种基于深度度量学习的视频分类方法。该方法设计了一种深度网络,网络包含特征学习、基于深度度量学习的相似性度量,以及分类3个部分。其中相似性度... 针对视频分类中普遍面临的类内离散度和类间相似性较大而制约分类性能的问题,该文提出一种基于深度度量学习的视频分类方法。该方法设计了一种深度网络,网络包含特征学习、基于深度度量学习的相似性度量,以及分类3个部分。其中相似性度量的工作原理为:首先,计算特征间的欧式距离作为样本之间的语义距离;其次,设计一个间隔分配函数,根据语义距离动态分配语义间隔;最后,根据样本语义间隔计算误差并反向传播,使网络能够学习到样本间语义距离的差异,自动聚焦于难分样本,以充分学习难分样本的特征。该网络在训练过程中采用多任务学习的方法,同时学习相似性度量和分类任务,以达到整体最优。在UCF101和HMDB51上的实验结果表明,与已有方法相比,提出的方法能有效提高视频分类精度。 展开更多
关键词 视频分类 深度学习 自适应间隔 深度度量学习 多任务学习
下载PDF
融合时空域特征的人脸表情识别 被引量:4
15
作者 陈拓 邢帅 +1 位作者 杨文武 金剑秋 《中国图象图形学报》 CSCD 北大核心 2022年第7期2185-2198,共14页
目的人脸表情识别是计算机视觉的核心问题之一。一方面,表情的产生对应着面部肌肉的一个连续动态变化过程,另一方面,该运动过程中的表情峰值帧通常包含了能够识别该表情的完整信息。大部分已有的人脸表情识别算法要么基于表情视频序列,... 目的人脸表情识别是计算机视觉的核心问题之一。一方面,表情的产生对应着面部肌肉的一个连续动态变化过程,另一方面,该运动过程中的表情峰值帧通常包含了能够识别该表情的完整信息。大部分已有的人脸表情识别算法要么基于表情视频序列,要么基于单幅表情峰值图像。为此,提出了一种融合时域和空域特征的深度神经网络来分析和理解视频序列中的表情信息,以提升表情识别的性能。方法该网络包含两个特征提取模块,分别用于学习单幅表情峰值图像中的表情静态“空域特征”和视频序列中的表情动态“时域特征”。首先,提出了一种基于三元组的深度度量融合技术,通过在三元组损失函数中采用不同的阈值,从单幅表情峰值图像中学习得到多个不同的表情特征表示,并将它们组合在一起形成一个鲁棒的且更具辩识能力的表情“空域特征”;其次,为了有效利用人脸关键组件的先验知识,准确提取人脸表情在时域上的运动特征,提出了基于人脸关键点轨迹的卷积神经网络,通过分析视频序列中的面部关键点轨迹,学习得到表情的动态“时域特征”;最后,提出了一种微调融合策略,取得了最优的时域特征和空域特征融合效果。结果该方法在3个基于视频序列的常用人脸表情数据集CK+(the extended Cohn-Kanade dataset)、MMI(the MMI facial expression database)和Oulu-CASIA(the Oulu-CASIA NIR&VIS facial expression database)上的识别准确率分别为98.46%、82.96%和87.12%,接近或超越了当前同类方法中的表情识别最高性能。结论提出的融合时空特征的人脸表情识别网络鲁棒地分析和理解了视频序列中的面部表情空域和时域信息,有效提升了人脸表情的识别性能。 展开更多
关键词 人脸表情识别(FER) 深度学习 深度度量学习 三元组损失 特征融合
原文传递
基于度量学习的行人重识别综述
16
作者 黄海新 陶文博 杜亭亭 《沈阳理工大学学报》 CAS 2023年第5期1-10,17,共11页
行人重识别的主要目标是在多个摄像机拍摄的图片或视频中识别同一行人,在智能安防等领域的应用前景广阔,是近年来计算机视觉方向的热门研究课题之一。随着深度学习的高速发展以及行人数据集的多样化,行人重识别的研究取得了显著进展,涉... 行人重识别的主要目标是在多个摄像机拍摄的图片或视频中识别同一行人,在智能安防等领域的应用前景广阔,是近年来计算机视觉方向的热门研究课题之一。随着深度学习的高速发展以及行人数据集的多样化,行人重识别的研究取得了显著进展,涉及的技术主要包括两个部分:特征提取和度量学习。已有的行人重识别研究更加关注特征提取方面,对于度量学习的系统论述不多。有效的度量学习对于提高行人重识别的准确性至关重要,故对基于度量学习的行人重识别技术进行梳理与分析具有重要价值。本文对近年基于度量学习的行人重识别方法进行总结,主要归纳为两部分:度量方法与度量学习算法。其中度量方法可分为距离度量与基于超图的相似性度量,将两种方法在行人重识别公开数据集上进行性能对比;度量学习算法总结为经典度量学习算法与深度度量学习算法,对深度度量学习算法中的损失函数进行性能总结与对比。最后,分析了基于度量学习的行人重识别中存在的问题及发展方向。 展开更多
关键词 距离度量 经典度量学习 深度度量学习 行人重识别
下载PDF
基于深度度量学习的茶叶相似性评价方法 被引量:1
17
作者 宋彦 赵磊 +2 位作者 宁井铭 戴前颖 程福寿 《农业工程学报》 EI CAS CSCD 北大核心 2023年第2期260-269,共10页
在眉茶拼配过程中,为了客观定量的评价试拼小样与标准样之间的相似性,该研究提出了一种基于深度度量学习的相似性评价方法,采用7种等级的眉茶标准样作为训练集,并在标准样中加入不同含量半成品茶构建具有不同相似性的测试集。采集茶样... 在眉茶拼配过程中,为了客观定量的评价试拼小样与标准样之间的相似性,该研究提出了一种基于深度度量学习的相似性评价方法,采用7种等级的眉茶标准样作为训练集,并在标准样中加入不同含量半成品茶构建具有不同相似性的测试集。采集茶样的高光谱数据并获取光谱特征与图像特征,分别以光谱数据、图像数据、图谱融合数据3种数据类型作为模型的输入。为了构建距离特征空间,该研究提出了基于三元组损失的深度特征提取网络,并设计了Center Anchor Triplet Loss损失函数,通过样本在特征空间的距离,表征相似程度,达到定性判断相似性和定量度量相似度的目的。结果表明:图谱融合数据结合Center Anchor Triplet Loss的方法精度最高,相似性判断准确率为98.89%,相似度度量准确率为100%。该研究采用未经训练的独立样本评价模型,可以获得较好的结果,说明算法具有较好的泛化能力。研究结果为眉茶的相似性评价提供了理论依据。 展开更多
关键词 图像处理 高光谱 茶叶拼配 相似性评价 深度度量学习 数据融合
下载PDF
基于联合对抗训练的鲁棒度量迁移
18
作者 杨乾成 罗勇 +3 位作者 胡晗 周昕 杜博 陶大程 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期1-9,共9页
迁移度量学习旨在从强大且可靠的距离度量中迁移知识来改善目标度量的效果,这些度量往往来自于学习目标相关的任务.现有的迁移度量学习算法仅关注于如何迁移知识,而这些知识容易过拟合到源域中.首先研究如何在源域中训练一个适合于迁移... 迁移度量学习旨在从强大且可靠的距离度量中迁移知识来改善目标度量的效果,这些度量往往来自于学习目标相关的任务.现有的迁移度量学习算法仅关注于如何迁移知识,而这些知识容易过拟合到源域中.首先研究如何在源域中训练一个适合于迁移的源域度量,然后设计了一种通用的深度异质迁移算法来进行高效的迁移学习.值得注意的是,将源域度量以联合对抗学习的方式进行训练,再以深度神经网络的方式将其参数化表示并对其进行迁移.迁移中通过表征模仿的方式来学习源域度量中的知识,这种方式允许源域和目标域中的知识来自于异质域.此外,严格限制目标度量网络的大小,使得目标网络更够进行高效的推理计算.在人脸识别数据集上的实验展现了本方法的有效性. 展开更多
关键词 迁移度量学习 深度度量学习 联合对抗训练 异质域
下载PDF
基于深度度量学习的电机故障诊断 被引量:4
19
作者 张永宏 王逸飞 +2 位作者 赵晓平 吴家新 王丽华 《测控技术》 2020年第7期30-37,共8页
深度学习以其强大的自适应特征提取和分类能力在机械大数据处理方面取得了丰硕的成果,由于电机结构的复杂性,其信号表现出的非平稳、非线性和复杂多样等特点,使得传统分类方法中的Softmax分类器+交叉熵损失函数对电机故障诊断力不从心... 深度学习以其强大的自适应特征提取和分类能力在机械大数据处理方面取得了丰硕的成果,由于电机结构的复杂性,其信号表现出的非平稳、非线性和复杂多样等特点,使得传统分类方法中的Softmax分类器+交叉熵损失函数对电机故障诊断力不从心。根据电机信号非平稳、数据量大等特点,结合短时傅里叶变换(STFT)与深度学习中的卷积神经网络(CNN)算法和Triplet Loss三元组思想,提出了深度度量学习电机故障诊断方法。该方法能将电机故障信号转换成时频谱图,同时构建CNN,将预处理后的样本用于CNN的训练,采用Triplet Loss作为损失函数度量故障数据高维特征间的距离,并结合标签有监督地微调整个网络,从而实现准确的电机故障诊断。实验表明该方法在处理复杂数据时能够度量特征在高维空间中的距离,高效完成故障诊断任务,弥补了交叉熵函数的不足。 展开更多
关键词 电机 深度度量学习 短时傅里叶变换 卷积神经网络
下载PDF
基于语义概念的图像情感分析
20
作者 杨瀚森 樊养余 +2 位作者 吕国云 刘诗雅 郭哲 《西北工业大学学报》 EI CAS CSCD 北大核心 2023年第4期784-793,共10页
随着越来越多的用户通过社交媒体表达自己的情感,图像情感分析技术受到了研究人员的密切关注。但是由于情感的模糊性和主观性,相比较于其他计算机视觉任务,图像情感分析更具挑战性。该领域既有的工作仅研究了图像到情感之间的直接映射... 随着越来越多的用户通过社交媒体表达自己的情感,图像情感分析技术受到了研究人员的密切关注。但是由于情感的模糊性和主观性,相比较于其他计算机视觉任务,图像情感分析更具挑战性。该领域既有的工作仅研究了图像到情感之间的直接映射关系。然而,心理学中有关情感感知的理论揭示了人们感知情感的过程是分步式的。因此,提出了一种新的图像情感分析框架,利用情感概念作为中级语义来辅助建立图像和情感之间的关系。将情感和概念的关系用知识图谱来描述并嵌入到语义空间中,再将图像的视觉特征投影至该语义空间与情感进行对齐,从而学习图像和情感之间的关系。另一方面,提出了一种多层次深度度量学习方法,从标记层面以及示例层面同时对模型进行优化。在2个情感图像数据集上进行实验,结果表明提出的方法在情感图像检索以及分类任务上,相对于现有方法表现良好。 展开更多
关键词 图像情感分析 知识图谱 视觉-语义嵌入 深度度量学习
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部