期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
新型乳腺磁共振增强图像肿瘤区域的自动分割模型 被引量:5
1
作者 马伟 刘鸿利 +2 位作者 孙明建 徐军 蒋燕妮 《中国生物医学工程学报》 CAS CSCD 北大核心 2019年第1期28-34,共7页
乳腺磁共振增强图像上,乳腺癌主要有肿块型和非肿块型两种强化方式。由于乳腺肿瘤区域相对较小,肿块型和非肿块型之间形态学差异大,非肿块型自身差异性复杂,因而很难精确分割出乳腺肿瘤区域。针对这些问题,提出一套新颖的粗检测细分割... 乳腺磁共振增强图像上,乳腺癌主要有肿块型和非肿块型两种强化方式。由于乳腺肿瘤区域相对较小,肿块型和非肿块型之间形态学差异大,非肿块型自身差异性复杂,因而很难精确分割出乳腺肿瘤区域。针对这些问题,提出一套新颖的粗检测细分割的深度学习模型(YOLOv2+SegNet)。该模型在精准分割之前,首先运用YOLOv2网络在乳腺可能的肿瘤区域进行粗检测,从而得到大致可能的肿瘤区域;接下来在粗检测的基础上,针对检测到可能的肿瘤区域,运用SegNet网络进行精细分割,从而实现算法最优的性能。为了验证YOLOv2+SegNet模型的有效性,从医院采集的数据集中选取560张乳腺MRI增强图像作为训练和测试(其中训练和测试集分别为415张和145张乳腺MRI数据)。在实验的过程中,运用YOLOv2+SegNet模型,分别对乳腺肿块型、非肿块型、肿块和非肿块混合型3类MRI数据进行肿瘤区域自动分割的实验。实验结果表明:YOLOv2+SegNet模型和SegNet网络分割结果的Dice系数相比有约10%的提升,与传统的C-V模型、模糊C均值聚类、光谱映射主动轮廓模型以及深度模型U-net、DeepLab相比有更为明显的提升。 展开更多
关键词 深度学习检测分割模型 磁共振增强成像 乳腺癌 肿块型 非肿块型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部