期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
新型乳腺磁共振增强图像肿瘤区域的自动分割模型
被引量:
5
1
作者
马伟
刘鸿利
+2 位作者
孙明建
徐军
蒋燕妮
《中国生物医学工程学报》
CAS
CSCD
北大核心
2019年第1期28-34,共7页
乳腺磁共振增强图像上,乳腺癌主要有肿块型和非肿块型两种强化方式。由于乳腺肿瘤区域相对较小,肿块型和非肿块型之间形态学差异大,非肿块型自身差异性复杂,因而很难精确分割出乳腺肿瘤区域。针对这些问题,提出一套新颖的粗检测细分割...
乳腺磁共振增强图像上,乳腺癌主要有肿块型和非肿块型两种强化方式。由于乳腺肿瘤区域相对较小,肿块型和非肿块型之间形态学差异大,非肿块型自身差异性复杂,因而很难精确分割出乳腺肿瘤区域。针对这些问题,提出一套新颖的粗检测细分割的深度学习模型(YOLOv2+SegNet)。该模型在精准分割之前,首先运用YOLOv2网络在乳腺可能的肿瘤区域进行粗检测,从而得到大致可能的肿瘤区域;接下来在粗检测的基础上,针对检测到可能的肿瘤区域,运用SegNet网络进行精细分割,从而实现算法最优的性能。为了验证YOLOv2+SegNet模型的有效性,从医院采集的数据集中选取560张乳腺MRI增强图像作为训练和测试(其中训练和测试集分别为415张和145张乳腺MRI数据)。在实验的过程中,运用YOLOv2+SegNet模型,分别对乳腺肿块型、非肿块型、肿块和非肿块混合型3类MRI数据进行肿瘤区域自动分割的实验。实验结果表明:YOLOv2+SegNet模型和SegNet网络分割结果的Dice系数相比有约10%的提升,与传统的C-V模型、模糊C均值聚类、光谱映射主动轮廓模型以及深度模型U-net、DeepLab相比有更为明显的提升。
展开更多
关键词
深度
学习
检测
和
分割
模型
磁共振增强成像
乳腺癌
肿块型
非肿块型
下载PDF
职称材料
题名
新型乳腺磁共振增强图像肿瘤区域的自动分割模型
被引量:
5
1
作者
马伟
刘鸿利
孙明建
徐军
蒋燕妮
机构
南京信息工程大学江苏省大数据分析技术重点实验室
南京医科大学第一附属医院放射科
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2019年第1期28-34,共7页
基金
国家自然科学基金(61771249
81501442)
+1 种基金
江苏省"六大人才高峰"高层次人才项目(2013-XXRJ-019)
江苏省自然科学基金(BK20141482)
文摘
乳腺磁共振增强图像上,乳腺癌主要有肿块型和非肿块型两种强化方式。由于乳腺肿瘤区域相对较小,肿块型和非肿块型之间形态学差异大,非肿块型自身差异性复杂,因而很难精确分割出乳腺肿瘤区域。针对这些问题,提出一套新颖的粗检测细分割的深度学习模型(YOLOv2+SegNet)。该模型在精准分割之前,首先运用YOLOv2网络在乳腺可能的肿瘤区域进行粗检测,从而得到大致可能的肿瘤区域;接下来在粗检测的基础上,针对检测到可能的肿瘤区域,运用SegNet网络进行精细分割,从而实现算法最优的性能。为了验证YOLOv2+SegNet模型的有效性,从医院采集的数据集中选取560张乳腺MRI增强图像作为训练和测试(其中训练和测试集分别为415张和145张乳腺MRI数据)。在实验的过程中,运用YOLOv2+SegNet模型,分别对乳腺肿块型、非肿块型、肿块和非肿块混合型3类MRI数据进行肿瘤区域自动分割的实验。实验结果表明:YOLOv2+SegNet模型和SegNet网络分割结果的Dice系数相比有约10%的提升,与传统的C-V模型、模糊C均值聚类、光谱映射主动轮廓模型以及深度模型U-net、DeepLab相比有更为明显的提升。
关键词
深度
学习
检测
和
分割
模型
磁共振增强成像
乳腺癌
肿块型
非肿块型
Keywords
deep detection and segmentation model
magnetic resonance imaging
breast cancer
mass-like
non-mass- like
分类号
R737.9 [医药卫生—肿瘤]
R445.2 [医药卫生—临床医学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
新型乳腺磁共振增强图像肿瘤区域的自动分割模型
马伟
刘鸿利
孙明建
徐军
蒋燕妮
《中国生物医学工程学报》
CAS
CSCD
北大核心
2019
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部