复杂工业过程因涉及多种物理/化学反应,其质量指标或环保指标等难测参数的精确数学模型难以构建.常用的基于神经网络的数据驱动建模方法存在可解释性差、样本需求量大等缺点.针对上述问题,提出了一种非神经网络模式的深度集成森林回归(d...复杂工业过程因涉及多种物理/化学反应,其质量指标或环保指标等难测参数的精确数学模型难以构建.常用的基于神经网络的数据驱动建模方法存在可解释性差、样本需求量大等缺点.针对上述问题,提出了一种非神经网络模式的深度集成森林回归(deep ensemble forest regression,DEFR)建模方法.首先,基于样本空间和特征空间的随机采样策略获得训练子集后构建T个基于决策树(decision trees,DT)的子森林模型,将采用K最近邻(K-nearest neighbor,KNN)准则选取的层回归向量与原始特征组合获得的增强层回归向量作为输入层森林模型的输出;然后,采用相同方式构建包含若干预设层数的中间层森林模型;最后,基于上层增强层回归向量构建输出层的子森林模型,通过对其T个输出值的加权获得DEFR模型的预测值.采用加州大学欧文分校(University of California Irvine,UCI)平台混凝土抗压强度数据和城市固废焚烧过程的二口恶英排放质量浓度数据仿真验证了所提方法的有效性.展开更多
为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度...为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现.展开更多
文摘复杂工业过程因涉及多种物理/化学反应,其质量指标或环保指标等难测参数的精确数学模型难以构建.常用的基于神经网络的数据驱动建模方法存在可解释性差、样本需求量大等缺点.针对上述问题,提出了一种非神经网络模式的深度集成森林回归(deep ensemble forest regression,DEFR)建模方法.首先,基于样本空间和特征空间的随机采样策略获得训练子集后构建T个基于决策树(decision trees,DT)的子森林模型,将采用K最近邻(K-nearest neighbor,KNN)准则选取的层回归向量与原始特征组合获得的增强层回归向量作为输入层森林模型的输出;然后,采用相同方式构建包含若干预设层数的中间层森林模型;最后,基于上层增强层回归向量构建输出层的子森林模型,通过对其T个输出值的加权获得DEFR模型的预测值.采用加州大学欧文分校(University of California Irvine,UCI)平台混凝土抗压强度数据和城市固废焚烧过程的二口恶英排放质量浓度数据仿真验证了所提方法的有效性.
文摘为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现.