期刊文献+
共找到778篇文章
< 1 2 39 >
每页显示 20 50 100
基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法 被引量:162
1
作者 胡茑庆 陈徽鹏 +2 位作者 程哲 张伦 张宇 《机械工程学报》 EI CAS CSCD 北大核心 2019年第7期9-18,共10页
行星齿轮箱振动信号具有非平稳特性,需要一定的先验知识和诊断专业知识设计和解释特征从而实现故障诊断。为了实现行星齿轮箱的智能诊断,提出一种基于经验模态分解(Empirical mode decomposition, EMD)和深度卷积神经网络(Deepconvoluti... 行星齿轮箱振动信号具有非平稳特性,需要一定的先验知识和诊断专业知识设计和解释特征从而实现故障诊断。为了实现行星齿轮箱的智能诊断,提出一种基于经验模态分解(Empirical mode decomposition, EMD)和深度卷积神经网络(Deepconvolutional neural network, DCNN)的智能故障诊断方法。首先对振动信号进行经验模态分解得到内禀模式函数(Intrinsicmode function, IMF);然后利用DCNN融合特征信息明显的IMF分量,并自动提取特征;最后,将特征用于分类器分类识别,从而实现行星齿轮箱故障诊断的自动化。试验结果表明:该方法能准确、有效地对行星齿轮箱的工作状态和故障类型进行分类。 展开更多
关键词 故障诊断 验模态分解 深度卷积神经网络 行星齿轮箱
原文传递
基于深度卷积神经网络的目标检测研究综述 被引量:101
2
作者 范丽丽 赵宏伟 +2 位作者 赵浩宇 胡黄水 王振 《光学精密工程》 EI CAS CSCD 北大核心 2020年第5期1152-1164,共13页
作为计算机视觉中的基本视觉识别问题,目标检测在过去的几十年中得到了广泛地研究。目标检测旨在给定图像中找到具有准确定位的特定对象,并为每个对象分配一个对应的标签。近年来,深度卷积神经网络DCNN(Deep Convolutional Neural Netwo... 作为计算机视觉中的基本视觉识别问题,目标检测在过去的几十年中得到了广泛地研究。目标检测旨在给定图像中找到具有准确定位的特定对象,并为每个对象分配一个对应的标签。近年来,深度卷积神经网络DCNN(Deep Convolutional Neural Networks)凭借其特征学习和迁移学习的强大能力在图像分类方面取得了一系列突破,在目标检测方面,它越来越受到人们的重视。因此,如何将CNN应用于目标检测并获得更好的性能是一项重要的研究。首先回顾和介绍了几类经典的目标检测算法;然后将深度学习算法的产生过程作为切入点,以系统的方式全面概述了各种目标检测方法;最后针对目标检测和深度学习算法面临的重大挑战,讨论了一些未来的方向,以促进深度学习对目标检测的研究。 展开更多
关键词 图像处理 深度卷积神经网络 目标检测 特征表示 深度学习
下载PDF
基于深度卷积神经网络的水稻穗瘟病检测方法 被引量:96
3
作者 黄双萍 孙超 +2 位作者 齐龙 马旭 汪文娟 《农业工程学报》 EI CAS CSCD 北大核心 2017年第20期169-176,共8页
穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务。该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络。Inception模块利用多尺... 穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务。该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络。Inception模块利用多尺度卷积核提取不同尺度穗瘟病斑分布式特征并进行级联融合。GoogLeNet利用其结构深度和宽度,学习复杂噪声高光谱图像的隐高维特征表达,并在统一框架中训练Softmax分类器,实现穗瘟病害预测建模。为验证该研究所提方法的有效性,以1 467株田间采集的穗株为试验对象,采用便携式户外高光谱成像仪Gaia Field-F-V10在自然光照条件下拍摄穗株高光谱图像,并由植保专家根据穗瘟病害描述确定其穗瘟标签。所有高光谱图像-标签数据对构成GoogLeNet模型训练和验证的原始数据集。该文采用随机梯度下降算法(SGD,stochastic gradient descent)优化GoogLeNet模型,提出随机扔弃1个波段图像和随机平移平均谱图像亮度的2种数据增强策略,增加训练数据规模,防止模型过拟合并改善其泛化性能。经测试,验证集上穗瘟病害预测最高准确率为92.0%。试验结果表明,利用GoogLeNet建立的深度卷积模型,可以很好地实现水稻穗瘟病害的精准检测,克服室外自然光条件下利用光谱图像进行病害预测面临的困难,将该类研究往实际生产应用推进一大步。 展开更多
关键词 病害 模型 图像处理 高光谱成像 穗瘟病检测 深度卷积神经网络 GoogLeNet
下载PDF
基于深度卷积神经网络的人脸识别技术综述 被引量:92
4
作者 景晨凯 宋涛 +3 位作者 庄雷 刘刚 王乐 刘凯伦 《计算机应用与软件》 北大核心 2018年第1期223-231,共9页
人脸识别是计算机视觉的重要应用之一,广义的人脸识别包含图像采集、人脸检测、人脸对齐、特征表示等过程。人脸识别的发展史主要是人脸特征表示方法的变迁史。针对特征的表示方法,从人脸识别技术的发展历史、研究现状和未来发展三个方... 人脸识别是计算机视觉的重要应用之一,广义的人脸识别包含图像采集、人脸检测、人脸对齐、特征表示等过程。人脸识别的发展史主要是人脸特征表示方法的变迁史。针对特征的表示方法,从人脸识别技术的发展历史、研究现状和未来发展三个方面进行综述:分阶段对传统的几类经典的人脸识别算法进行回顾和总结;以深度学习算法的诞生过程为切入点,重点分析了在人脸识别中取得突破性进展的深度卷积神经网络DCNN(deep convolutional neural networks)的技术思想和关键问题;针对人脸识别和深度学习算法的重大挑战,展望了未来可能存在的发展方向。 展开更多
关键词 人脸识别 特征表示 深度学习 深度卷积神经网络
下载PDF
基于深度卷积神经网络的番茄主要器官分类识别方法 被引量:91
5
作者 周云成 许童羽 +1 位作者 郑伟 邓寒冰 《农业工程学报》 EI CAS CSCD 北大核心 2017年第15期219-226,共8页
为实现番茄不同器官的快速、准确检测,提出一种基于深度卷积神经网络的番茄主要器官分类识别方法。在VGGNet基础上,通过结构优化调整,构建了10种番茄器官分类网络模型,在番茄器官图像数据集上,应用多种数据增广技术对网络进行训练,测试... 为实现番茄不同器官的快速、准确检测,提出一种基于深度卷积神经网络的番茄主要器官分类识别方法。在VGGNet基础上,通过结构优化调整,构建了10种番茄器官分类网络模型,在番茄器官图像数据集上,应用多种数据增广技术对网络进行训练,测试结果表明各网络的分类错误率均低于6.392%。综合考虑分类性能和速度,优选出一种8层网络用于番茄主要器官特征提取与表达。用筛选出的8层网络作为基本结构,设计了一种番茄主要器官检测器,结合Selective Search算法生成番茄器官候选检测区域。通过对番茄植株图像进行检测识别,试验结果表明,该检测器对果、花、茎的检测平均精度分别为81.64%、84.48%和53.94%,能够同时对不同成熟度的果和不同花龄的花进行有效识别,且在检测速度和精度上优于R-CNN和Fast R-CNN。 展开更多
关键词 目标识别 图像处理 像素 番茄器官 深度卷积神经网络 数据增广 深度学习
下载PDF
面向大规模图像分类的深度卷积神经网络优化 被引量:63
6
作者 白琮 黄玲 +2 位作者 陈佳楠 潘翔 陈胜勇 《软件学报》 EI CSCD 北大核心 2018年第4期1029-1038,共10页
在图像分类任务中,为了获得更高的分类精度,需要对图像提取不同层次的特征信息.深度学习被越来越多地应用于大规模图像分类任务中.提出了一种基于深度卷积神经网络的、可应用于大规模图像分类的深度学习框架.该框架在经典的深度卷积神... 在图像分类任务中,为了获得更高的分类精度,需要对图像提取不同层次的特征信息.深度学习被越来越多地应用于大规模图像分类任务中.提出了一种基于深度卷积神经网络的、可应用于大规模图像分类的深度学习框架.该框架在经典的深度卷积神经网络AlexNet基础上,分别从网络框架和网络内部结构两个方面对网络进行了优化和改进,进一步提升了网络的特征表达能力.同时,通过在全连接层引入隐层,使得网络能够同时具备学习图像特征和二值哈希的功能,从而使该框架具有处理大规模图像数据的能力.通过在3个标准数据库中的一系列比对实验,分析了不同优化方法在不同情况下的作用,并证明了所提优化方法的有效性. 展开更多
关键词 图像分类 哈希编码 深度卷积神经网络 激活函数 池化
下载PDF
利用多尺度特征与深度网络对遥感影像进行场景分类 被引量:62
7
作者 许夙晖 慕晓冬 +1 位作者 赵鹏 马骥 《测绘学报》 EI CSCD 北大核心 2016年第7期834-840,共7页
针对因样本量小而导致的遥感图像场景分类精度不高的问题,结合非下采样Contourlet变换(NSCT)、深度卷积神经网络(DCNN)和多核支持向量机(MKSVM),提出了一种基于多尺度深度卷积神经网络(MS-DCNN)的遥感图像场景分类方法。首先利用非下采... 针对因样本量小而导致的遥感图像场景分类精度不高的问题,结合非下采样Contourlet变换(NSCT)、深度卷积神经网络(DCNN)和多核支持向量机(MKSVM),提出了一种基于多尺度深度卷积神经网络(MS-DCNN)的遥感图像场景分类方法。首先利用非下采样Contourlet变换方法对遥感图像多尺度分解,然后对分解后的高频子带和低频子带分别用DCNN训练得到了不同尺度的图像特征,最后采用MKSVM综合多尺度特征并实现遥感图像场景分类。对标准遥感图像分类数据集的试验结果表明,本算法能够结合低频和高频子带对不同类别场景的识别优势,对遥感图像场景取得较好的分类结果。 展开更多
关键词 遥感图像 场景分类 深度卷积神经网络 非下采样轮廓波变换 多核支持向量机
下载PDF
基于深度卷积神经网络的柑橘目标识别方法 被引量:58
8
作者 毕松 高峰 +1 位作者 陈俊文 张潞 《农业机械学报》 EI CAS CSCD 北大核心 2019年第5期181-186,共6页
针对户外自然环境,基于深度卷积神经网络设计了对光照变化、亮度不匀、前背景相似、果实及枝叶相互遮挡、阴影覆盖等自然环境下典型干扰因素具有良好鲁棒性的柑橘视觉识别模型。模型包括可稳定提取自然环境下柑橘目标视觉特征的深层卷... 针对户外自然环境,基于深度卷积神经网络设计了对光照变化、亮度不匀、前背景相似、果实及枝叶相互遮挡、阴影覆盖等自然环境下典型干扰因素具有良好鲁棒性的柑橘视觉识别模型。模型包括可稳定提取自然环境下柑橘目标视觉特征的深层卷积网络结构、可提取高层语义特征来获取柑橘特征图的深层池化结构和基于非极大值抑制方法的柑橘目标位置预测结构,并基于迁移学习完成了柑橘目标识别模型训练。本文运用多重分割的方法提高了柑橘目标识别模型的多尺度图像检测能力和实时性,利用包含多种干扰因素的自然环境下柑橘目标数据集测试,结果表明,柑橘识别模型对自然采摘环境下常见干扰因素及其叠加具有良好的鲁棒性和实时性,识别平均准确率均值为86. 6%,平均损失为7. 7,平均单帧图像检测时间为80 ms。 展开更多
关键词 自然环境 柑橘 识别 深度卷积神经网络
下载PDF
深度卷积神经网络在目标检测中的研究进展 被引量:57
9
作者 姚群力 胡显 雷宏 《计算机工程与应用》 CSCD 北大核心 2018年第17期1-9,共9页
深度卷积神经网络以多层次的特征学习与丰富的特征表达能力,在目标检测领域取得了突破进展。概括了卷积神经网络在目标检测领域的研究进展,首先回顾传统目标检测的发展及存在的问题,引出卷积神经网络的目标检测基本原理和基本训练方法;... 深度卷积神经网络以多层次的特征学习与丰富的特征表达能力,在目标检测领域取得了突破进展。概括了卷积神经网络在目标检测领域的研究进展,首先回顾传统目标检测的发展及存在的问题,引出卷积神经网络的目标检测基本原理和基本训练方法;然后分析了以R-CNN为代表的基于区域建议的目标检测框架,介绍以YOLO算法为代表的将目标检测归结为回归问题的目标检测框架;最后,对目前目标检测的一些问题进行简要总结,对未来深度卷积神经网络在目标检测的发展进行了展望。 展开更多
关键词 深度卷积神经网络 目标检测 特征表达 特征提取
下载PDF
基于并行深度卷积神经网络的图像美感分类 被引量:53
10
作者 王伟凝 王励 +3 位作者 赵明权 蔡成加 师婷婷 徐向民 《自动化学报》 EI CSCD 北大核心 2016年第6期904-914,共11页
随着计算机和社交网络的飞速发展,图像美感的自动评价产生了越来越大的需求并受到了广泛关注.由于图像美感评价的主观性和复杂性,传统的手工特征和局部特征方法难以全面表征图像的美感特点,并准确量化或建模.本文提出一种并行深度卷积... 随着计算机和社交网络的飞速发展,图像美感的自动评价产生了越来越大的需求并受到了广泛关注.由于图像美感评价的主观性和复杂性,传统的手工特征和局部特征方法难以全面表征图像的美感特点,并准确量化或建模.本文提出一种并行深度卷积神经网络的图像美感分类方法,从同一图像的不同角度出发,利用深度学习网络自动完成特征学习,得到更为全面的图像美感特征描述;然后利用支持向量机训练特征并建立分类器,实现图像美感分类.通过在两个主流的图像美感数据库上的实验显示,本文方法与目前已有的其他算法对比,获得了更好的分类准确率. 展开更多
关键词 图像美感评估 深度卷积神经网络 并行卷积神经网络 特征提取
下载PDF
基于数据增强的卷积神经网络图像识别研究 被引量:50
11
作者 高友文 周本君 胡晓飞 《计算机技术与发展》 2018年第8期62-65,共4页
针对深度学习网络在处理图像分类的过程中数据集样本数较少和样本相似度较高的问题,在卷积神经网络模型Alex Net的基础上,提出了对数据集采用数据集扩增、背景分割和主成分分析等数据预处理方法。卷积神经网络模型的基本结构为5个卷积... 针对深度学习网络在处理图像分类的过程中数据集样本数较少和样本相似度较高的问题,在卷积神经网络模型Alex Net的基础上,提出了对数据集采用数据集扩增、背景分割和主成分分析等数据预处理方法。卷积神经网络模型的基本结构为5个卷积层,2个全连接层和dropout层。实验环境是ubuntu16.04系统,Caffe深度学习框架。实验首先对原始的公开数据集Leaves和苹果表面病变数据集进行分类识别测试,分别得到84%和78%的准确率。然后对数据增强后的数据集再进行测试,公开数据集leaves的准确率为86%,准确率提高了2%,苹果表面病变数据集的准确率为83%,准确率提高了5%。测试结果表明,通过数据增强处理后,公开数据集Leaves和苹果表面病变数据集在该网络上的识别准确率都有了一定的提升。 展开更多
关键词 深度卷积神经网络 数据增强 识别精度 图像识别
下载PDF
基于空间金字塔池化和深度卷积神经网络的作物害虫识别 被引量:48
12
作者 张博 张苗辉 陈运忠 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期209-215,共7页
为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害... 为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害虫进行检测定位,然后对检测定位出的害虫进行种类识别。通过改进YOLOv3的网络结构,采用上采样与卷积操作相结合的方法实现反卷积,使算法能够有效地检测到图片中体型较小的作物害虫样本;通过对采集到的实际场景下20类害虫进行识别测试,识别精度均值可达到88.07%。试验结果表明,本文提出的识别算法能够有效地对作物害虫进行检测和种类识别。 展开更多
关键词 图像识别 算法 害虫分类 深度卷积神经网络 空间金字塔池化 卷积
下载PDF
基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断 被引量:48
13
作者 丁承君 冯玉伯 王曼娜 《振动与冲击》 EI CSCD 北大核心 2021年第2期287-296,共10页
针对滚动轴承振动信号非平稳、非线性特点以及特征提取困难问题,提出一种基于变分模态分解(VMD)与深度卷积神经网络相结合的特征提取方法并应用于滚动轴承故障诊断。利用VMD将原始振动信号分解得到若干不同频率的限带本征模态分量,通过... 针对滚动轴承振动信号非平稳、非线性特点以及特征提取困难问题,提出一种基于变分模态分解(VMD)与深度卷积神经网络相结合的特征提取方法并应用于滚动轴承故障诊断。利用VMD将原始振动信号分解得到若干不同频率的限带本征模态分量,通过卷积网络中的多组卷积核自动学习各模态数据的不同特征,保证了特征提取的自适应性、全面性和多样性。在特征提取的基础上,使用全连接神经网络进行故障分类与诊断。将所提方法应用于滚动轴承故障诊断,结果表明,该方法在变工况情况下能够实现滚动轴承故障类别以及损伤程度的精确判定。 展开更多
关键词 变分模态分解(VMD) 深度卷积神经网络 特征提取 智能故障诊断 滚动轴承
下载PDF
基于深度学习的输电线路视觉检测研究综述 被引量:47
14
作者 赵振兵 齐鸿雨 聂礼强 《广东电力》 2019年第9期11-23,共13页
保障输电线路的可靠性是能源互联网和智能电网建设的重要内容,基于深度学习的智能化输电线路视觉巡检技术具有安全、高效、便捷等特点,对保障输电网的稳定运行有重要意义。为此,首先总结国内外深度学习视觉检测方法以及输电线路视觉检... 保障输电线路的可靠性是能源互联网和智能电网建设的重要内容,基于深度学习的智能化输电线路视觉巡检技术具有安全、高效、便捷等特点,对保障输电网的稳定运行有重要意义。为此,首先总结国内外深度学习视觉检测方法以及输电线路视觉检测方法研究现状;其次,描述无人机巡检、在线监测、激光雷达巡检、高分辨率光学卫星巡检等4种输电线路巡检方式,分析不同方式的差异与优劣,同时讨论了深度学习在4种方式中应用的关键问题;最后,探讨了深度学习在输电线路视觉检测中应用的未来发展方向。 展开更多
关键词 输电线路 视觉检测 深度学习 深度卷积神经网络 智能巡检
下载PDF
基于DCNN的图像语义分割综述 被引量:44
15
作者 魏云超 赵耀 《北京交通大学学报》 CAS CSCD 北大核心 2016年第4期82-91,共10页
图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个像素点进行分类,将图像分割为若干个视觉上有意义的或感兴趣的区域,以利于后续的图像分析和视觉理解.近年来,深度卷积神经网络(Deep Convolutional Neural Network... 图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个像素点进行分类,将图像分割为若干个视觉上有意义的或感兴趣的区域,以利于后续的图像分析和视觉理解.近年来,深度卷积神经网络(Deep Convolutional Neural Network,DCNN)的出现,极大地推动了语义分割的发展.本文从语义分割的基本定义出发,对语义分割中存在的困难和挑战进行了分析和描述.总结了目前用于评测语义分割算法的典型数据库,并以PASCAL VOC数据库为主线对近年来基于DCNN的语义分割算法进行了梳理和总结.最后对语义分割未来的研究重点进行了探讨和预测. 展开更多
关键词 图像语义分割 深度学习 深度卷积神经网络
下载PDF
应用深度卷积神经网络的色织物缺陷检测 被引量:41
16
作者 景军锋 范晓婷 +1 位作者 李鹏飞 洪良 《纺织学报》 EI CAS CSCD 北大核心 2017年第2期68-74,共7页
针对织物缺陷检测时传统人工的误检率、漏检率较高问题,提出一种应用深度卷积神经网络的色织物缺陷检测算法。因织物图像采集过程中含有较多噪声且信噪比较低,先对缺陷织物进行最优尺寸高斯滤波,有效滤除细节噪声;再根据织物图像特征建... 针对织物缺陷检测时传统人工的误检率、漏检率较高问题,提出一种应用深度卷积神经网络的色织物缺陷检测算法。因织物图像采集过程中含有较多噪声且信噪比较低,先对缺陷织物进行最优尺寸高斯滤波,有效滤除细节噪声;再根据织物图像特征建立深度卷积神经网络,利用径向基神经网络的非线性映射能力作用于卷积神经网络,并通过反向传播算法调整权值参数,获取无缺陷样本与训练样本之间的映射函数;最后,利用映射函数及特征字典重构图像并提取特征,根据Meanshift算法分割缺陷,确定缺陷位置。结果表明:应用深度卷积神经网络的缺陷检测算法对色织物图像库中的缺陷图像可实现提高检测效率、缩短检测时间,获取准确缺陷位置的目的。 展开更多
关键词 色织物 图像库 缺陷检测 深度卷积神经网络 映射函数
下载PDF
利用深度卷积神经网络提高未知噪声下的语音增强性能 被引量:38
17
作者 袁文浩 孙文珠 +1 位作者 夏斌 欧世峰 《自动化学报》 EI CSCD 北大核心 2018年第4期751-759,共9页
为了进一步提高基于深度学习的语音增强方法在未知噪声下的性能,本文从神经网络的结构出发展开研究.基于在时间与频率两个维度上,语音和噪声信号的局部特征都具有强相关性的特点,采用深度卷积神经网络(Deep convolutional neural networ... 为了进一步提高基于深度学习的语音增强方法在未知噪声下的性能,本文从神经网络的结构出发展开研究.基于在时间与频率两个维度上,语音和噪声信号的局部特征都具有强相关性的特点,采用深度卷积神经网络(Deep convolutional neural network,DCNN)建模来表示含噪语音和纯净语音之间的复杂非线性关系.通过设计有效的训练特征和训练目标,并建立合理的网络结构,提出了基于深度卷积神经网络的语音增强方法.实验结果表明,在未知噪声条件下,本文方法相比基于深度神经网络(Deep neural network,DNN)的方法在语音质量和可懂度两种指标上都有明显提高. 展开更多
关键词 语音增强 深度卷积神经网络 深度神经网络 噪声
下载PDF
基于条件生成式对抗网络的数据增强方法 被引量:38
18
作者 陈文兵 管正雄 陈允杰 《计算机应用》 CSCD 北大核心 2018年第11期3305-3311,共7页
深度卷积神经网络(CNN)在大规模带有标签的数据集训练下,训练后模型能够取得高的识别率或好的分类效果,而利用较小规模数据集训练CNN模型则通常出现过拟合现象。针对这一问题,提出了一种集成高斯混合模型(GMM)及条件生成式对抗网络(CGAN... 深度卷积神经网络(CNN)在大规模带有标签的数据集训练下,训练后模型能够取得高的识别率或好的分类效果,而利用较小规模数据集训练CNN模型则通常出现过拟合现象。针对这一问题,提出了一种集成高斯混合模型(GMM)及条件生成式对抗网络(CGAN)的数据增强方法并记作GMM-CGAN。首先,通过围绕核心区域随机滑动采样的方法增加数据集样本数量;其次,假定噪声随机向量服从GMM描述的分布,将它作为CGAN生成器的初始输入,图像标签作为CGAN条件,训练CGAN以及GMM模型的参数;最后,利用已训练CGAN生成符合样本真实分布的新数据集。对包含12种雾型386个样本的天气形势图基准集利用GMM-CGAN方法进行数据增强,增强后的数据集样本数多达38600个,将该数据集训练的CNN模型与仅使用仿射变换增强的数据集及CGAN方法增强的数据集训练的CNN模型相比,实验结果表明,前者的平均分类正确率相较于后两个模型分别提高了18.2%及14.1%,达到89.1%。 展开更多
关键词 图像分类 深度卷积神经网络 高斯混合模型 有条件对抗神经网络 数据增强算法
下载PDF
基于迁移学习的无人机影像耕地信息提取方法 被引量:38
19
作者 鲁恒 付萧 +3 位作者 贺一楠 李龙国 庄文化 刘铁刚 《农业机械学报》 EI CAS CSCD 北大核心 2015年第12期274-279,284,共7页
随着精准农业技术的发展,对农作物用地信息快速、准确提取的需求越来越高。同时,无人机技术以其方便、高效、具有低空云下飞行能力等优势被广泛应用于自然资源的调查中。但无人机影像普遍光谱信息较为匮乏,因此很难准确、快速地提取出... 随着精准农业技术的发展,对农作物用地信息快速、准确提取的需求越来越高。同时,无人机技术以其方便、高效、具有低空云下飞行能力等优势被广泛应用于自然资源的调查中。但无人机影像普遍光谱信息较为匮乏,因此很难准确、快速地提取出耕地信息。基于此,提出了一种利用迁移学习机制的耕地提取方法(TLCLE)。首先,利用深度卷积神经网络(DCNN)剔除线状地物(道路、田埂等),然后,通过引入迁移学习机制将DCNN特征训练过程中得到的特征提取方法迁移到耕地提取中,最后,将所提方法与利用易康(e Cognition)软件进行耕地提取(ECLE)结果进行对比。研究结果表明:对于实验影像1、2,TLCLE方法耕地提取总体精度分别为91.9%、88.1%,ECLE方法总体精度分别为90.3%、88.3%,2种方法提取精度相当,在保证耕地地块完整、连续性上TLCLE方法优于ECLE方法。 展开更多
关键词 耕地信息 无人机影像 信息提取 迁移学习 深度卷积神经网络
下载PDF
深度学习:多层神经网络的复兴与变革 被引量:34
20
作者 山世光 阚美娜 +2 位作者 刘昕 刘梦怡 邬书哲 《科技导报》 CAS CSCD 北大核心 2016年第14期60-70,共11页
人工智能(AI)已经进入一个新的蓬勃发展期。推动这一轮AI狂澜的是三大引擎,即深度学习(DL)、大数据和大规模并行计算,其中又以DL为核心。本文回顾本轮"深度神经网络复兴"的基本情况,概要介绍常用的4种深度模型,即:深度信念网... 人工智能(AI)已经进入一个新的蓬勃发展期。推动这一轮AI狂澜的是三大引擎,即深度学习(DL)、大数据和大规模并行计算,其中又以DL为核心。本文回顾本轮"深度神经网络复兴"的基本情况,概要介绍常用的4种深度模型,即:深度信念网络(DBN)、深度自编码网络(DAN)、深度卷积神经网络(DCNN)及长短期记忆递归神经网络(LSTM-RNN)。简要介绍深度学习在语音识别和计算机视觉领域几个重要任务上的应用效果情况。为便于应用DL,介绍了几种常用的深度学习开源平台。对深度学习带来的启示和变革做了一些开放式的评述,讨论了该领域的开放问题和发展趋势。 展开更多
关键词 深度神经网络:深度信念网络 深度自编码网络 深度卷积神经网络 长短期记忆递归神经网络 语音识别 计算机视觉
原文传递
上一页 1 2 39 下一页 到第
使用帮助 返回顶部