期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法
1
作者
林慧斌
王洪畅
习慈羊
《振动工程学报》
EI
CSCD
北大核心
2024年第3期485-496,共12页
压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩...
压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法。针对无噪声的故障信号样本难以获取的问题,提出一种利用故障机理构建数据集的方法,利用该仿真数据集训练得到的模型适用于不同工况下的实测轴承信号。构造网络层数由所需要的信号压缩率确定、隐含层与原信号的频率呈对应关系的深度卷积去噪自编码网络。截取训练完备的编码子网络(即深度卷积测量网络)代替传统的观测矩阵对滚动轴承振动信号进行压缩测量,实现压缩域的故障特征提取。仿真分析验证了所提数据集构造方法及压缩域特征提取方法的有效性。滚动轴承实验信号分析进一步验证了采用所提方法训练得到的深度卷积测量网络具有很好的泛化性,且能够在压缩率远低于传统压缩感知方法的情况下有效地提取轴承故障特征成分并进行故障诊断。
展开更多
关键词
故障诊断
滚动轴承
故障特征提取
压缩感知
深度
卷积
测量
网络
下载PDF
职称材料
题名
基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法
1
作者
林慧斌
王洪畅
习慈羊
机构
华南理工大学机械与汽车工程学院
出处
《振动工程学报》
EI
CSCD
北大核心
2024年第3期485-496,共12页
基金
国家自然科学基金资助项目(51875207)
广东省自然科学基金资助项目(2020A1515010750,2022A1515011238)。
文摘
压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法。针对无噪声的故障信号样本难以获取的问题,提出一种利用故障机理构建数据集的方法,利用该仿真数据集训练得到的模型适用于不同工况下的实测轴承信号。构造网络层数由所需要的信号压缩率确定、隐含层与原信号的频率呈对应关系的深度卷积去噪自编码网络。截取训练完备的编码子网络(即深度卷积测量网络)代替传统的观测矩阵对滚动轴承振动信号进行压缩测量,实现压缩域的故障特征提取。仿真分析验证了所提数据集构造方法及压缩域特征提取方法的有效性。滚动轴承实验信号分析进一步验证了采用所提方法训练得到的深度卷积测量网络具有很好的泛化性,且能够在压缩率远低于传统压缩感知方法的情况下有效地提取轴承故障特征成分并进行故障诊断。
关键词
故障诊断
滚动轴承
故障特征提取
压缩感知
深度
卷积
测量
网络
Keywords
fault diagnosis
rolling bearing
fault feature extraction
compressed sensing
deep convolutional measurement network
分类号
TH165.3 [机械工程—机械制造及自动化]
TH133.33
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法
林慧斌
王洪畅
习慈羊
《振动工程学报》
EI
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部