期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法
1
作者 布金伟 余科根 +4 位作者 汪秋兰 李玲惠 刘馨雨 左小清 常军 《测绘学报》 EI CSCD 北大核心 2024年第7期1321-1335,共15页
星载GNSS-R作为一种新兴的观测方法,最近被应用于有效波高反演。现有研究通常使用从延迟多普勒图中提取的特征值以构建经验地球物理模型函数反演SWH。然而,使用多个变量参数作为模型输入具有很大挑战。为此,本文提出了一个融合星载GNSS-... 星载GNSS-R作为一种新兴的观测方法,最近被应用于有效波高反演。现有研究通常使用从延迟多普勒图中提取的特征值以构建经验地球物理模型函数反演SWH。然而,使用多个变量参数作为模型输入具有很大挑战。为此,本文提出了一个融合星载GNSS-R数据和多变量参数反演全球海面SWH的深度学习网络模型(GloWH-Net)。为了验证本文模型的性能,ERA5、WaveWatchⅢ和AVISO SWH数据被用作广泛测试的参考数据,以评估GloWH-Net模型和先前模型(即经验模型和机器学习模型)的SWH反演性能。结果表明,当分别使用ERA5、WaveWatchⅢ和AVISO SWH作为参考值时,所提的GloWH-Net模型反演SWH的均方根误差分别为0.330、0.393和0.433 m,相关系数分别为0.91、0.89和0.84。相比基于最小方差估计器的经验组合模型反演SWH的均方根误差分别降低了53.45%、48.06%和40.63%;相比袋装树机器学习模型反演SWH的均方根误差分别降低了21.92%、18.72%和4.47%。表明了本文方法在反演全球海面SWH方面具有显著优势。 展开更多
关键词 GNSS-R 延迟多普勒图 海洋有效 经验模型 深度学习模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部