Global water security is a severe issue that threatens human health and well-being. Finding sustainable alternative water resources has become a matter of great urgency. For coastal urban areas, desalinated seawater c...Global water security is a severe issue that threatens human health and well-being. Finding sustainable alternative water resources has become a matter of great urgency. For coastal urban areas, desalinated seawater could serve as a freshwater supply. However, since 20%-30% of the water supply is used for flushing waste from the city, seawater with simple treatment could also partly replace the use of freshwater. In this work, the freshwater saving potential and environmental impacts of the urban water system (water-wastewater closed loop) adopting seawater desalination, seawater for toilet flushing (SWTF), or reclaimed water for toilet flushing (RWTF) are compared with those of a conventional freshwater system, through a life-cycle assessment and sensitivity analysis. The potential applications of these processes are also assessed. The results support the environmental sustainability of the SWTF approach, but its potential application depends on the coastal distance and effective population density of a city. Developed coastal cities with an effective population density exceeding 3000 persons.km-2 and located less than 30 km from the seashore (for the main pipe supplying seawater to the city) would benefit from applying SWTF, regardless of other impact parameters. By further applying the sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI) process for wastewater treatment, the maximum distance from the seashore can be extended to 60 km. Considering that most modern urbanized cities fulfill these criteria, the next generation of water supply systems could consist of a freshwater supply coupled with a seawater supply for sustainable urban development.展开更多
040846 新式零排放海水精养循环系统养殖海水鱼=A novel zero discharge intensive seawater recirculating system for the cul- ture of marine fish[刊,英]/Gelfand L Y, Barak Y,Even-Chen Z…//J.World Aquac.Soc..-2003,34(3).-34...040846 新式零排放海水精养循环系统养殖海水鱼=A novel zero discharge intensive seawater recirculating system for the cul- ture of marine fish[刊,英]/Gelfand L Y, Barak Y,Even-Chen Z…//J.World Aquac.Soc..-2003,34(3).-344 -358 对零排放海水循环系统精养真鲷进行了试验。该系统运行期间无废水和污物排出, 使用两个环形水道、一个空气过滤器、一个沉淀池和一个液基反应器。鱼池放养红罗非鱼(尼罗罗非鱼×奥利亚罗非鱼)密度为16 kg/m3,水体盐度0-20。养殖167 d时投放21 kg/m3真鲷代替罗非鱼。展开更多
文摘Global water security is a severe issue that threatens human health and well-being. Finding sustainable alternative water resources has become a matter of great urgency. For coastal urban areas, desalinated seawater could serve as a freshwater supply. However, since 20%-30% of the water supply is used for flushing waste from the city, seawater with simple treatment could also partly replace the use of freshwater. In this work, the freshwater saving potential and environmental impacts of the urban water system (water-wastewater closed loop) adopting seawater desalination, seawater for toilet flushing (SWTF), or reclaimed water for toilet flushing (RWTF) are compared with those of a conventional freshwater system, through a life-cycle assessment and sensitivity analysis. The potential applications of these processes are also assessed. The results support the environmental sustainability of the SWTF approach, but its potential application depends on the coastal distance and effective population density of a city. Developed coastal cities with an effective population density exceeding 3000 persons.km-2 and located less than 30 km from the seashore (for the main pipe supplying seawater to the city) would benefit from applying SWTF, regardless of other impact parameters. By further applying the sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI) process for wastewater treatment, the maximum distance from the seashore can be extended to 60 km. Considering that most modern urbanized cities fulfill these criteria, the next generation of water supply systems could consist of a freshwater supply coupled with a seawater supply for sustainable urban development.
文摘040846 新式零排放海水精养循环系统养殖海水鱼=A novel zero discharge intensive seawater recirculating system for the cul- ture of marine fish[刊,英]/Gelfand L Y, Barak Y,Even-Chen Z…//J.World Aquac.Soc..-2003,34(3).-344 -358 对零排放海水循环系统精养真鲷进行了试验。该系统运行期间无废水和污物排出, 使用两个环形水道、一个空气过滤器、一个沉淀池和一个液基反应器。鱼池放养红罗非鱼(尼罗罗非鱼×奥利亚罗非鱼)密度为16 kg/m3,水体盐度0-20。养殖167 d时投放21 kg/m3真鲷代替罗非鱼。