Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons(PAHs),ubiquitous persistent environmental pollutants derived from natural and anthro...Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons(PAHs),ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes,in the last decade.In this study,a pot experiment was conducted to investigate the potential of phytoremediation of pyrene from spiked soils planted with white clover(Trifolium repens)in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1.The results showed that growth of white clover on pyrenecontaminated soils was not affected.The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils.At the end of the experiment(60 d),the average removal ratio of pyrene in the spiked soils with white clover was 77%,which was 31%and 57%higher than those of the controls with or without micobes, respectively.Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration.However,the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation.Bioconcentration factors of pyrene(BCFs,ratio of pyrene,on a dry weight basis,in the plant to that in the soil)tended to decrease with increase in the residual soil pyrene concentration.Therefore,removal of pyrene in the contaminated soils was feasible using white clove.展开更多
Bioconcentration factors (BCFs) are of great importance for ecological risk assessment of organic chemicals. In this study, a quantitative structure-activity relationship (QSAR) model for fish BCFs of 8 groups of comp...Bioconcentration factors (BCFs) are of great importance for ecological risk assessment of organic chemicals. In this study, a quantitative structure-activity relationship (QSAR) model for fish BCFs of 8 groups of compounds was developed employing partial least squares (PLS) regression, based on linear solvation energy relationship (LSER) theory and theoretical molecular structural descriptors. The guidelines for development and validation of QSAR models proposed by the Organization for Economic Cooperation and Development (OECD) were followed. The model results show that the main factors governing logBCF are Connolly molecular area (CMA), average molecular polarizability (α) and molecular weight (MW). Thus molecular size plays a critical role in affecting the bioconcentration of organic pollutants in fish. For the established model, the multiple correlation coefficient square (RY2) = 0.868, the root mean square error (RMSE) = 0.553 log units, and the leave-many-out cross-validated Q2CUM = 0.860, indicating its good goodness-of-fit and robustness. The model predictivity was evaluated by external validation, with the external explained variance (QE2XT) = 0.755 and RMSE = 0.647 log units. Moreover, the applicability domain of the developed model was assessed and visualized by the Williams plot. The developed QSAR model can be used to predict fish logBCF for organic chemicals within the application domain.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.40432004 and 20677015)the Postdoctoral Science Foundation of China(No.20070420094)+2 种基金the Postdoctoral Science Foundation of Shanghai Municipality,China(No.08R214116)the Science and Technology Commission of Shanghai Municipality,China(No.0752nm025)theNational High-Tech Research and Development Program(No.2007AA06Z331)
文摘Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons(PAHs),ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes,in the last decade.In this study,a pot experiment was conducted to investigate the potential of phytoremediation of pyrene from spiked soils planted with white clover(Trifolium repens)in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1.The results showed that growth of white clover on pyrenecontaminated soils was not affected.The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils.At the end of the experiment(60 d),the average removal ratio of pyrene in the spiked soils with white clover was 77%,which was 31%and 57%higher than those of the controls with or without micobes, respectively.Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration.However,the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation.Bioconcentration factors of pyrene(BCFs,ratio of pyrene,on a dry weight basis,in the plant to that in the soil)tended to decrease with increase in the residual soil pyrene concentration.Therefore,removal of pyrene in the contaminated soils was feasible using white clove.
基金Supported by the National Basic Research Program of China (Grant No. 2006CB403302)
文摘Bioconcentration factors (BCFs) are of great importance for ecological risk assessment of organic chemicals. In this study, a quantitative structure-activity relationship (QSAR) model for fish BCFs of 8 groups of compounds was developed employing partial least squares (PLS) regression, based on linear solvation energy relationship (LSER) theory and theoretical molecular structural descriptors. The guidelines for development and validation of QSAR models proposed by the Organization for Economic Cooperation and Development (OECD) were followed. The model results show that the main factors governing logBCF are Connolly molecular area (CMA), average molecular polarizability (α) and molecular weight (MW). Thus molecular size plays a critical role in affecting the bioconcentration of organic pollutants in fish. For the established model, the multiple correlation coefficient square (RY2) = 0.868, the root mean square error (RMSE) = 0.553 log units, and the leave-many-out cross-validated Q2CUM = 0.860, indicating its good goodness-of-fit and robustness. The model predictivity was evaluated by external validation, with the external explained variance (QE2XT) = 0.755 and RMSE = 0.647 log units. Moreover, the applicability domain of the developed model was assessed and visualized by the Williams plot. The developed QSAR model can be used to predict fish logBCF for organic chemicals within the application domain.