The North China Craton(NCC) is an important part of eastern China. Recent studies have shown that the eastern NCC(ENCC) has undergone significant lithospheric thinning and destruction since the late Mesozoic. Destruct...The North China Craton(NCC) is an important part of eastern China. Recent studies have shown that the eastern NCC(ENCC) has undergone significant lithospheric thinning and destruction since the late Mesozoic. Destruction of the cratonic lithosphere is necessarily accompanied by crustal deformation. Therefore, a detailed crustal deformation model can provide basic observational constraints for understanding the process and mechanisms of the destruction of the NCC. In this study, we estimated the crustal azimuthal anisotropy beneath 198 broadband stations in the NCC with a joint analysis of Ps waves converted at the Moho from radial and transverse receiver function data. We also performed a harmonic analysis to test the reliability of the measured anisotropy. We obtained robust crustal azimuthal anisotropy beneath 23 stations that are mostly located on the western margin of the Bohai Bay Basin, Yin-Yan orogenic belt, and Taihang Mountains, which reflects the crustal deformation characteristics in those regions. The crustal shear wave splitting time was found to range from 0.05 s to 0.68 s, with an average value of 0.23 s, which reveals a distinct crustal anisotropy in the Trans-North China Orogen(TNCO) and its adjacent areas. Our analysis of the results suggests that the strong NW-SE tectonic extension in the late Mesozoic and Cenozoic played an important role in crustal anisotropy in this region. In addition, the E-W trending crustal anisotropy on the margin of the Bohai Bay Basin indicates an effect of the ENE-WSW trending horizontal principal compressive stress. The crustal anisotropy in the Yin-Yan orogenic belt may be an imprint of the multiple-phase shortening of a dominant N-S direction from the early-to-middle Jurassic to the Early Cretaceous. Stations in the Taihang Mountains show large splitting times and well-aligned NW-SE fast directions that correlate with those measured from SKS splitting and that are possibly related to the lithospheric modification and magmatic underplating from the Late Mesozoic to展开更多
In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteris...In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.展开更多
The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measureme...The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measurements is investigated. It is found that friction between loading plates and the rock specimen affects the test results. Therefore, friction must be carefully considered to obtain accurate measurements. The simulation results also show that in contrast to the 2D model in which a rate-dependent cohesive law must be introduced, 3D models with a rate-independent law can produce good results. Furthermore, the study suggests that test measurements are seriously affected by specimen thickness; thus, full 3D modeling is required for simulation of the SCB test.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41574034, 41688103, and 91414301)
文摘The North China Craton(NCC) is an important part of eastern China. Recent studies have shown that the eastern NCC(ENCC) has undergone significant lithospheric thinning and destruction since the late Mesozoic. Destruction of the cratonic lithosphere is necessarily accompanied by crustal deformation. Therefore, a detailed crustal deformation model can provide basic observational constraints for understanding the process and mechanisms of the destruction of the NCC. In this study, we estimated the crustal azimuthal anisotropy beneath 198 broadband stations in the NCC with a joint analysis of Ps waves converted at the Moho from radial and transverse receiver function data. We also performed a harmonic analysis to test the reliability of the measured anisotropy. We obtained robust crustal azimuthal anisotropy beneath 23 stations that are mostly located on the western margin of the Bohai Bay Basin, Yin-Yan orogenic belt, and Taihang Mountains, which reflects the crustal deformation characteristics in those regions. The crustal shear wave splitting time was found to range from 0.05 s to 0.68 s, with an average value of 0.23 s, which reveals a distinct crustal anisotropy in the Trans-North China Orogen(TNCO) and its adjacent areas. Our analysis of the results suggests that the strong NW-SE tectonic extension in the late Mesozoic and Cenozoic played an important role in crustal anisotropy in this region. In addition, the E-W trending crustal anisotropy on the margin of the Bohai Bay Basin indicates an effect of the ENE-WSW trending horizontal principal compressive stress. The crustal anisotropy in the Yin-Yan orogenic belt may be an imprint of the multiple-phase shortening of a dominant N-S direction from the early-to-middle Jurassic to the Early Cretaceous. Stations in the Taihang Mountains show large splitting times and well-aligned NW-SE fast directions that correlate with those measured from SKS splitting and that are possibly related to the lithospheric modification and magmatic underplating from the Late Mesozoic to
基金Financial support for this work,provided by the National Natural Science Foundation of China (No.50534040)the Project of the Science and Technology Ministry of China(No.2006BAB16B01)the Post Graduate Research Project of Jiangsu Province (No.CX08B_103Z),
文摘In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.
基金supported by the Australian Research Council(Grant No.DE130100457)State Key Laboratory of Hydraulics and Mountain River Engineering(SKHL)(Grant No.SKHL1407)the National Natural Science Foundation of China(Grant Nos.41202207,51204112 and 2015JY0045)
文摘The semi-circular bend(SCB) dynamic fracture toughness test is simulated using discrete element models. The influence of the frictional boundary condition, constitutive law and specimen thickness on the test measurements is investigated. It is found that friction between loading plates and the rock specimen affects the test results. Therefore, friction must be carefully considered to obtain accurate measurements. The simulation results also show that in contrast to the 2D model in which a rate-dependent cohesive law must be introduced, 3D models with a rate-independent law can produce good results. Furthermore, the study suggests that test measurements are seriously affected by specimen thickness; thus, full 3D modeling is required for simulation of the SCB test.