现有的服装流行趋势预测方法多采用传统的时间序列预测方法,数据来源多为电商网站的销售数据,在预测精度方面具有较大的误差。为解决此问题,文章提出了一种基于卷积神经网络、双向长短时记忆(Bi-directional Long Short-Term Memory,BiL...现有的服装流行趋势预测方法多采用传统的时间序列预测方法,数据来源多为电商网站的销售数据,在预测精度方面具有较大的误差。为解决此问题,文章提出了一种基于卷积神经网络、双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络和注意力机制的服装流行趋势预测模型。实验结果表明,本文提出的模型在服装流行趋势预测中优于传统的时间序列预测模型和简单的深度神经网络模型。展开更多
文摘现有的服装流行趋势预测方法多采用传统的时间序列预测方法,数据来源多为电商网站的销售数据,在预测精度方面具有较大的误差。为解决此问题,文章提出了一种基于卷积神经网络、双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络和注意力机制的服装流行趋势预测模型。实验结果表明,本文提出的模型在服装流行趋势预测中优于传统的时间序列预测模型和简单的深度神经网络模型。