Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Wat...Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Watershed on Sept. 4, 2007, July 25, 2010 and Sept. 4, 2010, blocked Parlung Zangbo River and produced dammed lakes, whose outburst flow made 50 m high terrace collapse at the opposite bank due to intense scouring on the foot of the terrace. As a result, the traffic was interrupted for 16 days in 2010 because that 900 m highway base was destructed and 430 m ruined. These debris flows were initiated by the glacial melting which was induced by continuous higher temperature and the following intensive rainfall, and expanded by moraines along channels and then blocked Parlung Zangbo. At the outlet of watershed,the density, velocity and peak discharge of debris flow was 2.06 t/m3, 12.7 m/s and 3334 m3/s, respectively. When the discharge at the outlet and the deposition volume into river exceeds 2125 m3/s and 126×103 m3, respectively, debris flow will completely blocked Parlung Zangbo. Moreover,if the shear stress of river flow on the foot of terrace and the inclination angel of terrace overruns 0. 377 N/m2 and 26°, respectively, the unconsolidated terrace will be eroded by outburst flow and collapse. It was strongly recommended for mitigation that identify and evade disastrous debris flows, reduce the junction angel of channels between river and watershed, build protecting wall for highway base and keep appropriate distance between highway and the edge of unconsolidated terrace.展开更多
研究城市化的生态水文效应对于指导河流的保护与生态修复实践具有重要意义。基于河流径流情势在维持河道生态系统完整性方面的重要性,在分析现有生态水文指标体系的特征及可操作性的基础上,建立了以径流历时曲线、洪峰流量频率超出曲线...研究城市化的生态水文效应对于指导河流的保护与生态修复实践具有重要意义。基于河流径流情势在维持河道生态系统完整性方面的重要性,在分析现有生态水文指标体系的特征及可操作性的基础上,建立了以径流历时曲线、洪峰流量频率超出曲线和T0.5(区域径流超出天然状态下重现期为0.5年的降水所产生的洪峰流量的时间占区域有径流总时间的比例)为代表的生态水文指标体系。利用SWMM(Storm Water Management Model)来模拟不同城市化程度下的降雨径流过程,并利用所建立的生态水文指标体系模拟其生态水文效应。结果表明:城市化程度越高,其时段流量幅度及历时越大,洪峰流量及发生的频率越大,T0.5越小。城市化通过改变径流的大小、历时及频率,改变了水域生态系统完整性与多样性,进而对河道生态系统产生了负面影响。展开更多
基金supported by the Key Program of National Natural Science Found of China(Grant No.41030742)the Grand Program of National Natural Science Found of China(Grant No.41190084)
文摘Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Watershed on Sept. 4, 2007, July 25, 2010 and Sept. 4, 2010, blocked Parlung Zangbo River and produced dammed lakes, whose outburst flow made 50 m high terrace collapse at the opposite bank due to intense scouring on the foot of the terrace. As a result, the traffic was interrupted for 16 days in 2010 because that 900 m highway base was destructed and 430 m ruined. These debris flows were initiated by the glacial melting which was induced by continuous higher temperature and the following intensive rainfall, and expanded by moraines along channels and then blocked Parlung Zangbo. At the outlet of watershed,the density, velocity and peak discharge of debris flow was 2.06 t/m3, 12.7 m/s and 3334 m3/s, respectively. When the discharge at the outlet and the deposition volume into river exceeds 2125 m3/s and 126×103 m3, respectively, debris flow will completely blocked Parlung Zangbo. Moreover,if the shear stress of river flow on the foot of terrace and the inclination angel of terrace overruns 0. 377 N/m2 and 26°, respectively, the unconsolidated terrace will be eroded by outburst flow and collapse. It was strongly recommended for mitigation that identify and evade disastrous debris flows, reduce the junction angel of channels between river and watershed, build protecting wall for highway base and keep appropriate distance between highway and the edge of unconsolidated terrace.
基金国家自然科学基金资助项目(51009065)美国Water Environment Research Foundation资助项目(03-SW-3a)~~
文摘研究城市化的生态水文效应对于指导河流的保护与生态修复实践具有重要意义。基于河流径流情势在维持河道生态系统完整性方面的重要性,在分析现有生态水文指标体系的特征及可操作性的基础上,建立了以径流历时曲线、洪峰流量频率超出曲线和T0.5(区域径流超出天然状态下重现期为0.5年的降水所产生的洪峰流量的时间占区域有径流总时间的比例)为代表的生态水文指标体系。利用SWMM(Storm Water Management Model)来模拟不同城市化程度下的降雨径流过程,并利用所建立的生态水文指标体系模拟其生态水文效应。结果表明:城市化程度越高,其时段流量幅度及历时越大,洪峰流量及发生的频率越大,T0.5越小。城市化通过改变径流的大小、历时及频率,改变了水域生态系统完整性与多样性,进而对河道生态系统产生了负面影响。