期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合上下文和注意力的视盘视杯分割 被引量:6
1
作者 刘洪普 赵一浩 +2 位作者 侯向丹 郭鸿湧 丁梦园 《中国图象图形学报》 CSCD 北大核心 2021年第5期1041-1057,共17页
目的青光眼会对人的视力造成不可逆的损伤,从眼底图像中精确地分割视盘和视杯是青光眼诊治中的一项重要工作,为有效提升视盘和视杯的分割精度,本文提出了融合上下文和注意力的视盘视杯分割方法(context attention U-Net,CA-Net)。方法... 目的青光眼会对人的视力造成不可逆的损伤,从眼底图像中精确地分割视盘和视杯是青光眼诊治中的一项重要工作,为有效提升视盘和视杯的分割精度,本文提出了融合上下文和注意力的视盘视杯分割方法(context attention U-Net,CA-Net)。方法进行极坐标转换,在极坐标系下进行分割可以平衡数据分布。使用修改的预训练Res Net作为特征提取网络,增强特征提取能力。采用上下文聚合模块(context aggregation module,CAM)多层次聚合图像上下文信息,使用注意力指导模块(attention guidance module,AGM)对融合后的特征图进行特征重标定,增强有用特征;使用深度监督思想同时对浅层网络权重进行训练,同时在视杯分割网络中引入了先验知识,约束对视杯的分割。结果在3个数据集上与其他方法进行对比实验,在Drishti-GS1数据集中,分割视盘的Dice(dice coefficient)和IOU(intersection-over-union)分别为0.9814和0.9635,分割视杯的Dice和IOU分别为0.9266和0.8633;在RIM-ONE(retinal image database for optic nerve evaluation)-v3数据集中,分割视盘的Dice和IOU分别为0.9768和0.9546,分割视杯的Dice和IOU分别为0.8642和0.7609;在Refuge数据集中,分割视盘的Dice和IOU分别为0.9758和0.9527,分割视杯的Dice和IOU分别为0.8871和0.7972,均优于对比算法。同时,消融实验验证了各模块的有效性,跨数据集实验进一步表明了CA-Net的泛化性,可视化图像也表明CA-Net能够分割出更接近标注的分割结果。结论在Drishti-GS1、RIM-ONE-v3和Refuge三个数据集的测试结果表明,CA-Net均能取得最优的视盘和视杯分割结果,跨数据集测试结果也更加表明了CA-Net具有良好的泛化性能。 展开更多
关键词 青光眼 视盘 视杯 上下文聚合模块 注意力指导模块 深度监督 先验知识
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部