Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via a...Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region. The forward blocking, conducting, and switching characteristics are analyzed and compared with an SA-GTO and conventional GTO. The results show that the IEC-GTO can obtain a better trade-off relation between on-state and turn-off characteristics. Additionally,the width of the oxide layer covering the anode region and the doping concentration of the anode region are optimized, the process feasibility is analyzed, and a realization scheme is given. The results show that the introduction of an oxide layer would not increase the complexity of process of the IEC-GTO.展开更多
Organic light-emitting diodes(OLEDs)have drawn tremendous attention due to their widespread applications in flat-panel displays and solid-state lightings over the years[1-4].The charge injection is crucial for the per...Organic light-emitting diodes(OLEDs)have drawn tremendous attention due to their widespread applications in flat-panel displays and solid-state lightings over the years[1-4].The charge injection is crucial for the performance of OLEDs featuring sandwiched p-i-n structures[5-9].For OLEDs,an indium tin oxide(ITO)electrode with a work function of 4.7 eV,and most holetransporting materials(HTMs)with the highest occupied molecular orbitals(HOMOs)close to-5.5 eV.展开更多
文摘Based on a short anode GTO structure (SA-GTO),a novel GTO structure called an injection efficiency controlled gate turn off thyristor (IEC-GTO) is proposed,in which the injection efficiency can be controlled via an additional thin oxide layer located in the short anode contact region. The forward blocking, conducting, and switching characteristics are analyzed and compared with an SA-GTO and conventional GTO. The results show that the IEC-GTO can obtain a better trade-off relation between on-state and turn-off characteristics. Additionally,the width of the oxide layer covering the anode region and the doping concentration of the anode region are optimized, the process feasibility is analyzed, and a realization scheme is given. The results show that the introduction of an oxide layer would not increase the complexity of process of the IEC-GTO.
基金supported by the National Key Basic Research and Development Program of China (2017YFA0204501 and 2020YFA0715000)the National Natural Science Foundation of China (51903137 and 61890942)+1 种基金Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHT2020-005)financial support from the Young Elite Scientist Sponsorship Program (2019QNRC001) by China Association for Science and Technology。
文摘Organic light-emitting diodes(OLEDs)have drawn tremendous attention due to their widespread applications in flat-panel displays and solid-state lightings over the years[1-4].The charge injection is crucial for the performance of OLEDs featuring sandwiched p-i-n structures[5-9].For OLEDs,an indium tin oxide(ITO)electrode with a work function of 4.7 eV,and most holetransporting materials(HTMs)with the highest occupied molecular orbitals(HOMOs)close to-5.5 eV.