传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布...传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布,并以此建立理想的波形模型;定义用于控制理想模型与实际波形拟合程度的能量函数,用吉布斯分布构建或然率;根据贝叶斯定理构建刻画波形分解的后验概率模型;设计可逆跳转马尔科夫链蒙特卡洛(reversible jump Markov chain Monte Carlo,RJMCMC)算法模拟该后验概率模型,以确定波形分解数并同时完成波形分解。为了验证提出算法的正确性,分别对不同区域的ICESat-GLAS波形数据进行了波形分解试验,定性和定量分析结果验证了本文方法的有效性、可靠性和准确性。展开更多
文摘传统激光雷达(light detection and ranging,LiDAR)数据处理均采用固定数的波形分解方法,容易遗漏部分重叠的返回波,降低波形拟合精度。为了实现可变数波形分解,本文提出了一种自动确定波形分解数的方法。假定波形数据服从混合高斯分布,并以此建立理想的波形模型;定义用于控制理想模型与实际波形拟合程度的能量函数,用吉布斯分布构建或然率;根据贝叶斯定理构建刻画波形分解的后验概率模型;设计可逆跳转马尔科夫链蒙特卡洛(reversible jump Markov chain Monte Carlo,RJMCMC)算法模拟该后验概率模型,以确定波形分解数并同时完成波形分解。为了验证提出算法的正确性,分别对不同区域的ICESat-GLAS波形数据进行了波形分解试验,定性和定量分析结果验证了本文方法的有效性、可靠性和准确性。