期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
机器学习预测油气产量现状 被引量:16
1
作者 黄家宸 张金川 《油气藏评价与开发》 CSCD 2021年第4期613-620,共8页
机器学习是一种通用的数据驱动分析方法,也是一个重要的油气大数据分析利用手段。油气勘探开发作为具有悠久历史和庞大数据基础的重要领域,具有很大的数据挖掘潜力。利用油气田大数据分析技术可以帮助决策者进行投资分析、风险评估、生... 机器学习是一种通用的数据驱动分析方法,也是一个重要的油气大数据分析利用手段。油气勘探开发作为具有悠久历史和庞大数据基础的重要领域,具有很大的数据挖掘潜力。利用油气田大数据分析技术可以帮助决策者进行投资分析、风险评估、生产优化,带来巨大的经济效益。机器学习方法早已被研究人员尝试应用于油气领域相关研究,随着机器学习算法的发展,许多应用场景被不断提出,但针对具体场景的通用方案仍在探索中。笔者从最基本原理着手介绍了机器学习的建模过程,梳理了用于油气田大数据分析的3类主要机器学习方法的发展历史,结合油气田大数据的特点,讨论了油气田大数据分析利用的核心内容、目标及优势,分析了机器学习在油气领域的主要应用场景,总结了目前典型油气产量预测中存在的问题及对策。 展开更多
关键词 油气田大数据 数据驱动模型 产量预测 机器学习 智能油田
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部