期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习机器视觉对于动力总成制造防错应用的研究
被引量:
3
1
作者
徐啸顺
任建
+1 位作者
林立
高雪婷
《传动技术》
2020年第1期3-10,共8页
汽车动力总成装配线环境中,为有效保证装配质量,通常采用机器视觉方法进行零部件装配的防错检测。目前主流传统的机器视觉防错技术无法有效满足投产初期极高的准确率要求,且具有受现场环境变化影响大、成本高等缺点。提出了基于深度学...
汽车动力总成装配线环境中,为有效保证装配质量,通常采用机器视觉方法进行零部件装配的防错检测。目前主流传统的机器视觉防错技术无法有效满足投产初期极高的准确率要求,且具有受现场环境变化影响大、成本高等缺点。提出了基于深度学习的机器视觉防错技术,采用卷积神经网络算法进行模型学习训练,获得99.99%以上的学习准确率;实际图像经预处理后导入深度学习模型进行识别判断;完成了系统的硬件选型和软件设计开发。两个实际应用案例均实现了99.95%以上的准确率,表明深度学习机器视觉防错技术能够有效适应图像扰动,满足高产能下的生产质量监控要求,同时可以降低硬件要求和成本,有效弥补传统机器视觉防错技术的不足。
展开更多
关键词
汽车
动力
总成
制造
防错检测
机器视觉
深度学习
卷积神经网络
下载PDF
职称材料
题名
基于深度学习机器视觉对于动力总成制造防错应用的研究
被引量:
3
1
作者
徐啸顺
任建
林立
高雪婷
机构
上汽通用汽车有限公司
出处
《传动技术》
2020年第1期3-10,共8页
文摘
汽车动力总成装配线环境中,为有效保证装配质量,通常采用机器视觉方法进行零部件装配的防错检测。目前主流传统的机器视觉防错技术无法有效满足投产初期极高的准确率要求,且具有受现场环境变化影响大、成本高等缺点。提出了基于深度学习的机器视觉防错技术,采用卷积神经网络算法进行模型学习训练,获得99.99%以上的学习准确率;实际图像经预处理后导入深度学习模型进行识别判断;完成了系统的硬件选型和软件设计开发。两个实际应用案例均实现了99.95%以上的准确率,表明深度学习机器视觉防错技术能够有效适应图像扰动,满足高产能下的生产质量监控要求,同时可以降低硬件要求和成本,有效弥补传统机器视觉防错技术的不足。
关键词
汽车
动力
总成
制造
防错检测
机器视觉
深度学习
卷积神经网络
Keywords
automobile powertrain manufacturing
error proofing detection
machine vision
deep learning
convolutional neural network algorithm
分类号
U468.2 [机械工程—车辆工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习机器视觉对于动力总成制造防错应用的研究
徐啸顺
任建
林立
高雪婷
《传动技术》
2020
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部