针对传统卷积神经网络(Convolutional neural network,CNN)应用于焊缝缺陷识别时,池化模型适应差及特征选择能力低、以及易导致过拟合问题,提出了一种基于改进卷积神经网络(Improved pooling model and feature selection of CNN,IPFCNN...针对传统卷积神经网络(Convolutional neural network,CNN)应用于焊缝缺陷识别时,池化模型适应差及特征选择能力低、以及易导致过拟合问题,提出了一种基于改进卷积神经网络(Improved pooling model and feature selection of CNN,IPFCNN)的焊缝缺陷识别方法。结合焊缝缺陷图像本身的特点,对传统平均池化模型做出改进,提出一种综合考虑池化域与其所在区域特征图分布的池化模型;为增强模型特征选择能力,提出将随机森林与卷积神经网络相结合的强化特征选择方法。以某汽轮机制造过程中焊缝缺陷识别案例对所提方法进行了验证和说明,结果表明提出的池化模型在处理不同特征分布的池化域时具有动态自适应性,并通过提高特征选择能力,使得所提方法比传统CNN方法具有更高的缺陷识别率。展开更多
文章提出了一种基于金字塔池化模型(Pyramid Scene Parseing Network,PSPNet)神经网络模型的竞技运动图像分割方法。其使用了一种具有速度快、精度高、易部署优点的卷积神经网络架构,利用残差网络实现了数据增强技术,进一步提高了分割...文章提出了一种基于金字塔池化模型(Pyramid Scene Parseing Network,PSPNet)神经网络模型的竞技运动图像分割方法。其使用了一种具有速度快、精度高、易部署优点的卷积神经网络架构,利用残差网络实现了数据增强技术,进一步提高了分割的准确性和稳定性。实验结果表明,提出的改进后的PSP Net模型在图像分割中的准确率为94.59%,优于其他方法。该方法有望在竞技运动领域的视频图像分割任务中得到广泛应用。展开更多
文摘针对传统卷积神经网络(Convolutional neural network,CNN)应用于焊缝缺陷识别时,池化模型适应差及特征选择能力低、以及易导致过拟合问题,提出了一种基于改进卷积神经网络(Improved pooling model and feature selection of CNN,IPFCNN)的焊缝缺陷识别方法。结合焊缝缺陷图像本身的特点,对传统平均池化模型做出改进,提出一种综合考虑池化域与其所在区域特征图分布的池化模型;为增强模型特征选择能力,提出将随机森林与卷积神经网络相结合的强化特征选择方法。以某汽轮机制造过程中焊缝缺陷识别案例对所提方法进行了验证和说明,结果表明提出的池化模型在处理不同特征分布的池化域时具有动态自适应性,并通过提高特征选择能力,使得所提方法比传统CNN方法具有更高的缺陷识别率。
文摘文章提出了一种基于金字塔池化模型(Pyramid Scene Parseing Network,PSPNet)神经网络模型的竞技运动图像分割方法。其使用了一种具有速度快、精度高、易部署优点的卷积神经网络架构,利用残差网络实现了数据增强技术,进一步提高了分割的准确性和稳定性。实验结果表明,提出的改进后的PSP Net模型在图像分割中的准确率为94.59%,优于其他方法。该方法有望在竞技运动领域的视频图像分割任务中得到广泛应用。