Sulfate reducing bacteria (SRB) is identified as the primary organisms responsible for the treatment of heavy metal wastewater. However, most heavy metals can inhibit the growth of SRB during heavy metal treatment pro...Sulfate reducing bacteria (SRB) is identified as the primary organisms responsible for the treatment of heavy metal wastewater. However, most heavy metals can inhibit the growth of SRB during heavy metal treatment processes. Sulfide is a metabolic product of SRB and it can precipitate or reduce heavy metals. This study focused on the effects of sulfide on SRB resistance to Cu(II), Hg(I) and Cr(VI) toxicity. First, we considered the existence style of various heavy metals with and without sulfide addition by sequential extraction experiments. Second, the particle size distribution was evaluated and the cell structure during the metabolism of a SRB culture, containing different heavy metals, was analyzed by particle size distribution and TEM analyses. Third, the evolution of sulfate under the influence of different concentrations of heavy metals with and without sulfide addition was investigated to evaluate SRB activity. The results indicated that sulfide played an important role in alleviating and even eliminating the toxicity of Cu(II), Hg(II) and Cr(VI). We also discuss the mechanism of sulfide on SRB resistance to Cu(II), Hg(I) and Cr(VI) toxicity.展开更多
基金supported by the National Natural Science Foundation of China (20877075)the National High-Technology R&D Program of China (2006BAC02A05)the National Key Basic Research Program of China (2007CB613501)
文摘Sulfate reducing bacteria (SRB) is identified as the primary organisms responsible for the treatment of heavy metal wastewater. However, most heavy metals can inhibit the growth of SRB during heavy metal treatment processes. Sulfide is a metabolic product of SRB and it can precipitate or reduce heavy metals. This study focused on the effects of sulfide on SRB resistance to Cu(II), Hg(I) and Cr(VI) toxicity. First, we considered the existence style of various heavy metals with and without sulfide addition by sequential extraction experiments. Second, the particle size distribution was evaluated and the cell structure during the metabolism of a SRB culture, containing different heavy metals, was analyzed by particle size distribution and TEM analyses. Third, the evolution of sulfate under the influence of different concentrations of heavy metals with and without sulfide addition was investigated to evaluate SRB activity. The results indicated that sulfide played an important role in alleviating and even eliminating the toxicity of Cu(II), Hg(II) and Cr(VI). We also discuss the mechanism of sulfide on SRB resistance to Cu(II), Hg(I) and Cr(VI) toxicity.