期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于回译和比例抽取孪生网络筛选的汉越平行语料扩充方法 被引量:4
1
作者 王可超 郭军军 +2 位作者 张亚飞 高盛祥 余正涛 《计算机工程与科学》 CSCD 北大核心 2022年第10期1861-1868,共8页
回译作为翻译中重要的数据增强方法,受到了越来越多研究者的关注。其基本思想为首先基于平行语料训练基础翻译模型,然后利用模型将单语语料翻译为目标语言,组合为新语料用于模型训练。然而在汉-越低资源场景下,训练得到的基础翻译模型... 回译作为翻译中重要的数据增强方法,受到了越来越多研究者的关注。其基本思想为首先基于平行语料训练基础翻译模型,然后利用模型将单语语料翻译为目标语言,组合为新语料用于模型训练。然而在汉-越低资源场景下,训练得到的基础翻译模型性能较差,导致在其上应用回译方法得到的平行语料中含有较多噪声,较难用于下游任务。针对此问题,构建基于比例抽取的孪生网络筛选模型,通过训练使得模型可以识别平行句对和伪平行句对,在同一语义空间上对回译得到的伪平行语料进行筛选去噪,进而得到更优的平行语料。在汉越数据集上的实验结果表明,所提方法训练的模型的性能相较基线模型有显著提升。 展开更多
关键词 平行语料扩充 回译 数据增强 比例抽取 孪生网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部