随着电网规模的持续扩大,市场环境下考虑网络安全约束的机组组合(security-constrained unit commitment,SCUC)模型中的变量和约束显著增加,模型的求解性能变差。当模型规模过大时,会出现现有的商用求解器无法求解的状况,造成大规模模...随着电网规模的持续扩大,市场环境下考虑网络安全约束的机组组合(security-constrained unit commitment,SCUC)模型中的变量和约束显著增加,模型的求解性能变差。当模型规模过大时,会出现现有的商用求解器无法求解的状况,造成大规模模型求解困难的问题。为实现大规模机组组合模型的快速求解,从减少模型约束数量的角度出发,提出了一种基于边界法的线性约束简化方法。通过边界法剔除模型中冗余的线性约束,可以有效降低模型规模,实现模型的快速求解。基于IEEE-39、WECC 179和IEEE-118算例,在市场环境下进行日前SCUC测试。通过对比简化前后的求解时间,表明该方法能够显著提高模型的求解速率。展开更多
A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of dete...A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of detectors needed to cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proven convergence properties. Experiments are performed to validate the assumptions made while designing the algorithm and to evaluate its performance.展开更多
文摘随着电网规模的持续扩大,市场环境下考虑网络安全约束的机组组合(security-constrained unit commitment,SCUC)模型中的变量和约束显著增加,模型的求解性能变差。当模型规模过大时,会出现现有的商用求解器无法求解的状况,造成大规模模型求解困难的问题。为实现大规模机组组合模型的快速求解,从减少模型约束数量的角度出发,提出了一种基于边界法的线性约束简化方法。通过边界法剔除模型中冗余的线性约束,可以有效降低模型规模,实现模型的快速求解。基于IEEE-39、WECC 179和IEEE-118算例,在市场环境下进行日前SCUC测试。通过对比简化前后的求解时间,表明该方法能够显著提高模型的求解速率。
基金Sponsored by the National Natural Science Foundation of China ( Grant No. 60671049 ), the Subject Chief Foundation of Harbin ( Grant No.2003AFXXJ013), the Education Department Research Foundation of Heilongjiang Province(Grant No.10541044,1151G012) and the Postdoctor Founda-tion of Heilongjiang(Grant No.LBH-Z05092).
文摘A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of detectors needed to cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proven convergence properties. Experiments are performed to validate the assumptions made while designing the algorithm and to evaluate its performance.