A long-term experiment set up in 1980 compared the effects of applying manures and chemical fertilizers on a paddy soil in the Taihu Lake region, China. Of the fourteen randomly distributed treatments consisting of di...A long-term experiment set up in 1980 compared the effects of applying manures and chemical fertilizers on a paddy soil in the Taihu Lake region, China. Of the fourteen randomly distributed treatments consisting of different combinations of organic manure, inorganic nitrogen (N), phosphorus (P), and potassium (K), and rice straw, eight were selected for the present study in 2007. Application of organic manure plus straw significantly increased soil organic carbon (SOC) content of the topsoil (0-10 cm) compared to that of chemical fertilizers alone. The content of SOC was relatively stable in the 10-30 cm layer in the chemical fertilizer treatments and in the 20-40 cm layer in the manure treatments. The stable carbon isotope ratio (513C) ranged from -24% to -28% and increased gradually with depth. The content of SOC was significantly (P 〈 0.05) negatively correlated with 513C. In the 0-20 cm layer, the 513C value significantly decreased in the treatments of manure alone (M), manure and chemical N and P fertilizers (MNP), manure and chemical N, P, and K fertilizers (MNPK), manure, rice straw, and chemical N fertilizer (MRN), and chemical N fertilizer and rice straw (CNR), as compared with the no-fertilizer control. In the 30-50 cm layer, however, the ratio significantly increased in all the treatments except Treatment CNR. Mineralization of organic C peaked in the first 2-4 d of incubation and gradually leveled off thereafter over the first 3 weeks, being faster in the manure treatments than the chemical fertilizer treatments. The average rate of mineralization varied from 55.36 to 75.46 mL CO2 kg-1 d-1 and that of stable mineralization from 10 to 20 mL CO2 kg-1 d-1. In eight weeks of incubation, cumulative mineralization was always higher in the manure treatments than the chemical fertilizer treatments, being the highest in Treatment MRN. Combined humus in the soil was mainly (over 50%) composed of tightly combined fraction. The loosely combined humus and its r展开更多
To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 samplin...To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 sampling sites in the Xunyang Hg mining district were chosen in this study. Total gaseous mercury(TGM) in ambient air was measured using a Lumex-RA915 automatic Hg analyzer in2011. Rice samples and soil samples from rhizosphere were collected systematically and simultaneously. Total Hg(THg) and methylmercury(Me Hg) concentrations in rice grain and soil samples and Hg speciation with modified sequential selective extractions were measured. The local environment was seriously polluted with Hg. The TGM(302 ± 376 ng·m-3, ranging from 24 to 2220 ng·m^(-3)) in the local ambient air, THg(28 ± 30 mg·kg^(-1), ranging from 0.31 to 121 mg·kg^(-1)) and Me Hg(2.3 ± 1.9 lg·kg^(-1),ranging from 0.24 to 8.9 lg·kg^(-1)) in soil samples were at the sample level with Hg contaminated area. The THg concentration(26 ± 16 lg·kg^(-1)ranging from 4.5 to 71 lg·kg^(-1)) in most of the rice grain samples clearly exceeds the threshold level(20 lg·kg^(-1)) in the Chinese national guidelines for cereals(NY 861-2004). The inorganic mercury(IHg)(9.1 ± 5.6 lg·kg^(-1), ranging from 1.2 to 24 lg·kg^(-1)) and Me Hg(14 ± 9.8 lg·kg^(-1), ranging from 2.1 to 59 lg·kg^(-1))concentration in rice grain samples were at the same level with Hg contaminated area. The main species of Hg in paddy soils reveal strong complex Hg and residue Hg. According to the correlation analysis, a Hg pollution mode from local Hg mining and smelting was hypothesized, including Hg emission, transportation, methylation, and uptake process.展开更多
Effects of soil management on carbon content in alluvial paddy were investigated using past soil survey data of Niigata prefecture, Japan. The changes of soil management were as follows: (1) slight decrease in nitr...Effects of soil management on carbon content in alluvial paddy were investigated using past soil survey data of Niigata prefecture, Japan. The changes of soil management were as follows: (1) slight decrease in nitrogen and phosphate fertilizer application rates; (2) decrease to half in the application of soil amendments, like calcium silicate; (3) decrease in compost application and increase in rice straw application; (4) increase in pipe drainage. In spite of these changes, negligible change of carbon content in the plow-layer of alluvial paddy soils had been observed for past 25 years. However, without rice straw application and paddy-upland rotations, the soil carbon content had been decreased. Carbon content of alluvial paddy soils classified into Gley Lowland soil (Fluvisol or Gleysol) at the depth of 0-30 cm was calculated about 49-103 g-kg"1 and gross carbon sequestration was calculated 7.68 Mt in the paddy field soils in Niigata prefecture.展开更多
基金Supported by the National Key Basic Research and Development Program of China (No. 2005CB121108)the Key Project of National Natural Science Foundation of China (No. 40335047)
文摘A long-term experiment set up in 1980 compared the effects of applying manures and chemical fertilizers on a paddy soil in the Taihu Lake region, China. Of the fourteen randomly distributed treatments consisting of different combinations of organic manure, inorganic nitrogen (N), phosphorus (P), and potassium (K), and rice straw, eight were selected for the present study in 2007. Application of organic manure plus straw significantly increased soil organic carbon (SOC) content of the topsoil (0-10 cm) compared to that of chemical fertilizers alone. The content of SOC was relatively stable in the 10-30 cm layer in the chemical fertilizer treatments and in the 20-40 cm layer in the manure treatments. The stable carbon isotope ratio (513C) ranged from -24% to -28% and increased gradually with depth. The content of SOC was significantly (P 〈 0.05) negatively correlated with 513C. In the 0-20 cm layer, the 513C value significantly decreased in the treatments of manure alone (M), manure and chemical N and P fertilizers (MNP), manure and chemical N, P, and K fertilizers (MNPK), manure, rice straw, and chemical N fertilizer (MRN), and chemical N fertilizer and rice straw (CNR), as compared with the no-fertilizer control. In the 30-50 cm layer, however, the ratio significantly increased in all the treatments except Treatment CNR. Mineralization of organic C peaked in the first 2-4 d of incubation and gradually leveled off thereafter over the first 3 weeks, being faster in the manure treatments than the chemical fertilizer treatments. The average rate of mineralization varied from 55.36 to 75.46 mL CO2 kg-1 d-1 and that of stable mineralization from 10 to 20 mL CO2 kg-1 d-1. In eight weeks of incubation, cumulative mineralization was always higher in the manure treatments than the chemical fertilizer treatments, being the highest in Treatment MRN. Combined humus in the soil was mainly (over 50%) composed of tightly combined fraction. The loosely combined humus and its r
基金financially supported by National Key Basic Research Program of China (973 Program,No.2013CB430004)the National Natural Science Foundation of China (No.41273152+1 种基金41473123)CAS Youth Innovation Promotion Association,Chinese Academy of Sciences (No.2011280)
文摘To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 sampling sites in the Xunyang Hg mining district were chosen in this study. Total gaseous mercury(TGM) in ambient air was measured using a Lumex-RA915 automatic Hg analyzer in2011. Rice samples and soil samples from rhizosphere were collected systematically and simultaneously. Total Hg(THg) and methylmercury(Me Hg) concentrations in rice grain and soil samples and Hg speciation with modified sequential selective extractions were measured. The local environment was seriously polluted with Hg. The TGM(302 ± 376 ng·m-3, ranging from 24 to 2220 ng·m^(-3)) in the local ambient air, THg(28 ± 30 mg·kg^(-1), ranging from 0.31 to 121 mg·kg^(-1)) and Me Hg(2.3 ± 1.9 lg·kg^(-1),ranging from 0.24 to 8.9 lg·kg^(-1)) in soil samples were at the sample level with Hg contaminated area. The THg concentration(26 ± 16 lg·kg^(-1)ranging from 4.5 to 71 lg·kg^(-1)) in most of the rice grain samples clearly exceeds the threshold level(20 lg·kg^(-1)) in the Chinese national guidelines for cereals(NY 861-2004). The inorganic mercury(IHg)(9.1 ± 5.6 lg·kg^(-1), ranging from 1.2 to 24 lg·kg^(-1)) and Me Hg(14 ± 9.8 lg·kg^(-1), ranging from 2.1 to 59 lg·kg^(-1))concentration in rice grain samples were at the same level with Hg contaminated area. The main species of Hg in paddy soils reveal strong complex Hg and residue Hg. According to the correlation analysis, a Hg pollution mode from local Hg mining and smelting was hypothesized, including Hg emission, transportation, methylation, and uptake process.
文摘Effects of soil management on carbon content in alluvial paddy were investigated using past soil survey data of Niigata prefecture, Japan. The changes of soil management were as follows: (1) slight decrease in nitrogen and phosphate fertilizer application rates; (2) decrease to half in the application of soil amendments, like calcium silicate; (3) decrease in compost application and increase in rice straw application; (4) increase in pipe drainage. In spite of these changes, negligible change of carbon content in the plow-layer of alluvial paddy soils had been observed for past 25 years. However, without rice straw application and paddy-upland rotations, the soil carbon content had been decreased. Carbon content of alluvial paddy soils classified into Gley Lowland soil (Fluvisol or Gleysol) at the depth of 0-30 cm was calculated about 49-103 g-kg"1 and gross carbon sequestration was calculated 7.68 Mt in the paddy field soils in Niigata prefecture.