Rhizosphere aeration, irrigation with aerated water, and post-irrigation aeration would positively impact crop growth and yield. The objective of this study was to determine the effect of 4 post-irrigation aeration le...Rhizosphere aeration, irrigation with aerated water, and post-irrigation aeration would positively impact crop growth and yield. The objective of this study was to determine the effect of 4 post-irrigation aeration levels on plant growth, yield, irrigation-use efficiency (IUE), and fruit market and nutritional quality of greenhouse cucumber under subsurface drip irrigation (SDI) and furrow irrigation (FI). The post-irrigation aeration levels were 0.00, 0.50, 0.75, and 1.00 times half the estimated porosity of the plot rhizosphere. The experimental design was a two-faetor split-plot in randomized complete blocks with irrigation (FI and SDI) as the main treatments and 4 aeration levels as the sub-treatments. Ridge and furrow main plots (2.4 m ~ 2.4 m) with 4 ridges were replicated 5 times. Each of the 4 ridges (1.44 m2 in area) in the main plots was used as a sub-treatment plot. The results showed that post-irrigation aeration enhanced greenhouse cucumber plant growth, yield, IUE, and fruit market and nutritional quality. These parameters generally increased with increasing aeration levels under both FI and SDI. The aeration effect was generally higher under SDI than FI, and the IUE under SDI was almost twice that under FI. Further investigation would be required to elucidate the plant physiological mechanisms and soil processes responsible for the observed effects.展开更多
基金Supported by the National High Technology Research and Development Program(863 Program)of China(No.2011AA100507)the National 111 Project of China(No.B12007)
文摘Rhizosphere aeration, irrigation with aerated water, and post-irrigation aeration would positively impact crop growth and yield. The objective of this study was to determine the effect of 4 post-irrigation aeration levels on plant growth, yield, irrigation-use efficiency (IUE), and fruit market and nutritional quality of greenhouse cucumber under subsurface drip irrigation (SDI) and furrow irrigation (FI). The post-irrigation aeration levels were 0.00, 0.50, 0.75, and 1.00 times half the estimated porosity of the plot rhizosphere. The experimental design was a two-faetor split-plot in randomized complete blocks with irrigation (FI and SDI) as the main treatments and 4 aeration levels as the sub-treatments. Ridge and furrow main plots (2.4 m ~ 2.4 m) with 4 ridges were replicated 5 times. Each of the 4 ridges (1.44 m2 in area) in the main plots was used as a sub-treatment plot. The results showed that post-irrigation aeration enhanced greenhouse cucumber plant growth, yield, IUE, and fruit market and nutritional quality. These parameters generally increased with increasing aeration levels under both FI and SDI. The aeration effect was generally higher under SDI than FI, and the IUE under SDI was almost twice that under FI. Further investigation would be required to elucidate the plant physiological mechanisms and soil processes responsible for the observed effects.