期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
水下光学图像重建方法研究进展 被引量:7
1
作者 王柯俨 黄诗芮 李云松 《中国图象图形学报》 CSCD 北大核心 2022年第5期1337-1358,共22页
水下光学图像可以提供直观丰富的海洋信息,近年来在海洋资源开发、环境保护和海洋工程等诸多领域发挥越来越重要的作用。但是受恶劣复杂的水下成像环境影响,水下光学图像普遍存在对比度低、图像模糊以及颜色失真等质量退化问题,严重制... 水下光学图像可以提供直观丰富的海洋信息,近年来在海洋资源开发、环境保护和海洋工程等诸多领域发挥越来越重要的作用。但是受恶劣复杂的水下成像环境影响,水下光学图像普遍存在对比度低、图像模糊以及颜色失真等质量退化问题,严重制约水下智能处理系统的性能和应用。如何清晰地重建水下光学图像是国内外广泛关注的、具有挑战性的难点问题。随着深度学习技术的蓬勃发展,利用深度学习来提升水下图像质量成为当前的研究热点。鉴于目前国内在水下光学图像重建方面的研究综述较少,本文全面综述其研究进展。分析了水下图像退化机理,总结了现有水下成像模型以及水下图像重建的挑战;梳理了水下光学图像重建方法的发展历程,根据是否采用深度学习以及是否基于成像模型,将现有方法分为4大类,并按照研究发展顺序,依次介绍4类方法的基本思想,分析其优缺点;归纳了目前公开的水下图像数据集以及常用的水下图像质量评价方法,并对8种典型的水下图像重建方法进行了性能评测和对比分析;总结了该领域目前仍存在的问题,展望了后续研究方向,以便于相关研究人员了解该领域的研究现状,促进该领域的技术发展。 展开更多
关键词 水下图像退化 深度学习 图像增强 图像复原 水下数据 水下图像质量评价
原文传递
基于空间特征选择的水下目标检测方法 被引量:4
2
作者 蔡达 范保杰 《信息与控制》 CSCD 北大核心 2022年第2期214-222,共9页
针对传统目标检测方法在水下识别任务中误检率较高的问题,基于一阶段全卷积检测器(FCOS)引入多尺度特征选择及中心边界特征选择,实现高精度水下目标检测。模型中的自适应加权融合特征金字塔通过设置可学习权重加权融合所有的特征层级,... 针对传统目标检测方法在水下识别任务中误检率较高的问题,基于一阶段全卷积检测器(FCOS)引入多尺度特征选择及中心边界特征选择,实现高精度水下目标检测。模型中的自适应加权融合特征金字塔通过设置可学习权重加权融合所有的特征层级,实现多尺度空间特征选择。此外,为了处理检测中分类和回归任务之间的特征耦合问题,并分离不同任务之间的共享特征,设计了基于空间特征解耦的检测头,实现了中心和边界区域的特征选择。实验中,针对水下数据集URPC2018和UWD2021进行性能测试,并与先进的目标检测方法进行对比。大量的实验结果表明,基于空间特征选择的FCOS模型在水下检测任务中展现出优异的性能,在URPC2018和UWD2021上的类平均精度(mean Average Precision,mAP)分别为82.7%和83.3%。 展开更多
关键词 水下目标检测 一阶段全卷积检测器 水下数据 特征选择
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部