针对多孔碳材料的合成依赖于强腐蚀性造孔剂和额外杂原子化合物,存在碳产率低、制备成本高的问题,该研究提出通过交联作用和原位掺杂策略绿色制备一种高产量、官能团丰富、氮磷共掺杂的生物质多孔碳,再通过物理复合制得碳硫复合材料用...针对多孔碳材料的合成依赖于强腐蚀性造孔剂和额外杂原子化合物,存在碳产率低、制备成本高的问题,该研究提出通过交联作用和原位掺杂策略绿色制备一种高产量、官能团丰富、氮磷共掺杂的生物质多孔碳,再通过物理复合制得碳硫复合材料用作锂硫电池正极。研究结果表明,植酸与烟梗表面官能团的强交联作用有利于形成多孔碳。同时,植酸富含碳和磷元素,可对多孔碳材料进行碳包覆和磷掺杂双重改性,进而提高碳产率,改善材料的导电性,增强材料对活性物质硫的吸附固定效果,加快充放电过程中电子的迁移转化。当植酸用量为20m L时,所制复合材料在0.1C倍率下的放电容量高达1211 m Ah/g;在1C倍率下循环300圈仍保持为885 m Ah/g,每圈容量衰减率仅为0.029%,表现出优异的循环稳定性。展开更多
Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples w...Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed.展开更多
文摘针对多孔碳材料的合成依赖于强腐蚀性造孔剂和额外杂原子化合物,存在碳产率低、制备成本高的问题,该研究提出通过交联作用和原位掺杂策略绿色制备一种高产量、官能团丰富、氮磷共掺杂的生物质多孔碳,再通过物理复合制得碳硫复合材料用作锂硫电池正极。研究结果表明,植酸与烟梗表面官能团的强交联作用有利于形成多孔碳。同时,植酸富含碳和磷元素,可对多孔碳材料进行碳包覆和磷掺杂双重改性,进而提高碳产率,改善材料的导电性,增强材料对活性物质硫的吸附固定效果,加快充放电过程中电子的迁移转化。当植酸用量为20m L时,所制复合材料在0.1C倍率下的放电容量高达1211 m Ah/g;在1C倍率下循环300圈仍保持为885 m Ah/g,每圈容量衰减率仅为0.029%,表现出优异的循环稳定性。
文摘Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed.