N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high s...N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high specific area (1,485 m2.g-l), high nitrogen content (10.8%) and suitable graphitic degree results in catalysts exhibiting high activity (with onset and half-wave potentials of 0.88 and 0.79 V vs the reversible hydrogen electrode (RHE), respectively) and four-electron selectivity for the oxygen reduction reaction (ORR) in alkaline medium---comparable to a commercial Pt/C catalyst, but far exceeding Pt/C in stability and durability. Owing to their superb ORR performance, low cost and facile preparation, the catalysts have great potential applications in fuel cells, metal-air batteries, and ORR-related electrochemical industries.展开更多
Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, ...Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA).展开更多
Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell na...Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spec- troscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.展开更多
文摘N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high specific area (1,485 m2.g-l), high nitrogen content (10.8%) and suitable graphitic degree results in catalysts exhibiting high activity (with onset and half-wave potentials of 0.88 and 0.79 V vs the reversible hydrogen electrode (RHE), respectively) and four-electron selectivity for the oxygen reduction reaction (ORR) in alkaline medium---comparable to a commercial Pt/C catalyst, but far exceeding Pt/C in stability and durability. Owing to their superb ORR performance, low cost and facile preparation, the catalysts have great potential applications in fuel cells, metal-air batteries, and ORR-related electrochemical industries.
文摘Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA).
文摘Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spec- troscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.