A SiC whisker-toughened MoSi2-SiC-Si coating was prepared on carbon/carbon (C/C) composites surface by a two-step technique of slurry and pack cementation, and the effects of thermal shock and oxidation on the mechani...A SiC whisker-toughened MoSi2-SiC-Si coating was prepared on carbon/carbon (C/C) composites surface by a two-step technique of slurry and pack cementation, and the effects of thermal shock and oxidation on the mechanical property of the coated C/C were studied. The flexural strength of C/C composites was improved by 6.8% after coated by SiC whisker-toughened MoSi2-SiC-Si. After thermal cycle between 1773 K and room temperature in air for 10 times, the mass loss of the coated sample was 5.08% and the percentage of remaining strength was 81.97%. After oxidation at 1773K in air for 60 min, the mass loss of the coated sample was 2.57% and the percentage of remaining strength was 89.63%. The decrease of the flexural strength during the thermal cycle and oxidation tests was primarily due to the oxidation of C/C substrate resulting from the cracking of coating.展开更多
基金Supported by the National Natural Science Foundation of China under Grant (90716024)the "111" Project under Grant (08040)
文摘A SiC whisker-toughened MoSi2-SiC-Si coating was prepared on carbon/carbon (C/C) composites surface by a two-step technique of slurry and pack cementation, and the effects of thermal shock and oxidation on the mechanical property of the coated C/C were studied. The flexural strength of C/C composites was improved by 6.8% after coated by SiC whisker-toughened MoSi2-SiC-Si. After thermal cycle between 1773 K and room temperature in air for 10 times, the mass loss of the coated sample was 5.08% and the percentage of remaining strength was 81.97%. After oxidation at 1773K in air for 60 min, the mass loss of the coated sample was 2.57% and the percentage of remaining strength was 89.63%. The decrease of the flexural strength during the thermal cycle and oxidation tests was primarily due to the oxidation of C/C substrate resulting from the cracking of coating.
基金supported by the National Natural Science Foundation of China(Nos.11272173 and 11572170)the Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University(No.TPL1503),China