A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By a...A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.