The capillary flow in asymmetric interior corner consisting of straight vane and curved wall is studied with analytical solution.The concept of equivalent interior corner angle is proposed to convert the asymmetric in...The capillary flow in asymmetric interior corner consisting of straight vane and curved wall is studied with analytical solution.The concept of equivalent interior corner angle is proposed to convert the asymmetric interior corner model into symmetric interior corner model.Then the governing equations of interior corner flow are established,and based on which the interior corner flow is calculated.This method is used to analyze the capillary flow in cylindrical vane-type surface tension tank with outer vanes.The research can provide beneficial reference to the design of vane-type surface tension tank.展开更多
1 引言 在第7届生物流变学大会上,我作为Poiseuille金质奖章的获得者,确实感到很光荣。这对我特别有意义,其两点理由如下:首先,我很荣幸能和以前的杰出获奖者行列联系在一起,他们是:Robin Fahracus, George W. Scott Blair, Alfred L. C...1 引言 在第7届生物流变学大会上,我作为Poiseuille金质奖章的获得者,确实感到很光荣。这对我特别有意义,其两点理由如下:首先,我很荣幸能和以前的杰出获奖者行列联系在一起,他们是:Robin Fahracus, George W. Scott Blair, Alfred L. Copley, Syoten Oka(冈小天),Mauricc loly, Alexander Siberberg, Hellmut Hartert和Yuan C. Fung(冯元桢)。我乐意成为他们中的一员。并且。展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50975280)
文摘The capillary flow in asymmetric interior corner consisting of straight vane and curved wall is studied with analytical solution.The concept of equivalent interior corner angle is proposed to convert the asymmetric interior corner model into symmetric interior corner model.Then the governing equations of interior corner flow are established,and based on which the interior corner flow is calculated.This method is used to analyze the capillary flow in cylindrical vane-type surface tension tank with outer vanes.The research can provide beneficial reference to the design of vane-type surface tension tank.
文摘1 引言 在第7届生物流变学大会上,我作为Poiseuille金质奖章的获得者,确实感到很光荣。这对我特别有意义,其两点理由如下:首先,我很荣幸能和以前的杰出获奖者行列联系在一起,他们是:Robin Fahracus, George W. Scott Blair, Alfred L. Copley, Syoten Oka(冈小天),Mauricc loly, Alexander Siberberg, Hellmut Hartert和Yuan C. Fung(冯元桢)。我乐意成为他们中的一员。并且。