期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于回译和比例抽取孪生网络筛选的汉越平行语料扩充方法 被引量:4
1
作者 王可超 郭军军 +2 位作者 张亚飞 高盛祥 余正涛 《计算机工程与科学》 CSCD 北大核心 2022年第10期1861-1868,共8页
回译作为翻译中重要的数据增强方法,受到了越来越多研究者的关注。其基本思想为首先基于平行语料训练基础翻译模型,然后利用模型将单语语料翻译为目标语言,组合为新语料用于模型训练。然而在汉-越低资源场景下,训练得到的基础翻译模型... 回译作为翻译中重要的数据增强方法,受到了越来越多研究者的关注。其基本思想为首先基于平行语料训练基础翻译模型,然后利用模型将单语语料翻译为目标语言,组合为新语料用于模型训练。然而在汉-越低资源场景下,训练得到的基础翻译模型性能较差,导致在其上应用回译方法得到的平行语料中含有较多噪声,较难用于下游任务。针对此问题,构建基于比例抽取的孪生网络筛选模型,通过训练使得模型可以识别平行句对和伪平行句对,在同一语义空间上对回译得到的伪平行语料进行筛选去噪,进而得到更优的平行语料。在汉越数据集上的实验结果表明,所提方法训练的模型的性能相较基线模型有显著提升。 展开更多
关键词 汉越平行语料扩充 回译 数据增强 比例抽取 孪生网络
下载PDF
连续属性离散化的Imp-Chi2算法 被引量:2
2
作者 桑雨 闫德勤 +1 位作者 刘磊 梁宏霞 《计算机工程》 CAS CSCD 北大核心 2008年第17期39-41,共3页
连续属性离散化是机器学习和数据挖掘领域中的一个重要问题,离散化是否合理决定着表达和提取相关信息的准确性。经过研究Chi2系列算法,提出一种新的基于属性重要性的连续属性离散化方法——Imp-Chi2算法,该算法依据属性重要性程度对属... 连续属性离散化是机器学习和数据挖掘领域中的一个重要问题,离散化是否合理决定着表达和提取相关信息的准确性。经过研究Chi2系列算法,提出一种新的基于属性重要性的连续属性离散化方法——Imp-Chi2算法,该算法依据属性重要性程度对属性离散化的顺序进行了合理的调整,能够更准确地对连续属性进行离散化。文章通过C4.5和支持向量机分别对离散化后的结果进行了实验,在实验过程中,提出一种训练集类比例抽取方法,避免了训练集随机抽取的不均匀性。实验结果证明了所提算法的有效性。 展开更多
关键词 连续属性离散化 CHI2算法 属性重要性 训练集类比例抽取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部