期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于MultiResAttUnet网络的二维地震断层自动识别方法研究
1
作者 王莉利 杜功鑫 +1 位作者 石颖 高新成 《地球物理学进展》 CSCD 北大核心 2023年第5期2160-2171,共12页
断层识别在地震解释中起重要作用,但传统断层识别技术存在识别难度大、周期长、极易受人为因素以及地震资料像素影响等问题,识别效率低下.为解决这一问题,在U-Net网络基础上,本文提出一种基于多尺度残差注意力网络的断层自动识别方法.... 断层识别在地震解释中起重要作用,但传统断层识别技术存在识别难度大、周期长、极易受人为因素以及地震资料像素影响等问题,识别效率低下.为解决这一问题,在U-Net网络基础上,本文提出一种基于多尺度残差注意力网络的断层自动识别方法.利用多尺度残差模块代替U-Net的两层卷积,进行多尺度提取模型特征;利用残差跳跃连接代替U-Net的跳跃连接,消除因高低层语义信息融合导致的语义丢失问题;最后引入注意力机制,融合全局、局部、空间以及通道特征,确保模型可以从各种维度最大限度地提取图像特征信息.实验结果表明:本文所提出的网络模型在Accuracy、F1、IOU与Dice等性能评价指标上均优于其他常见的网络模型,对比基模型U-Net,各项指标分别提高了1.5%、15.6%、15.4%和7.4%;通过对加噪数据与实际数据等进行断层识别实验,证明本文方法具有很好的抗噪性与识别效果. 展开更多
关键词 断层识别 多尺度残差模块 残差跳跃连接 注意力机制
原文传递
基于改进U⁃Net的低质量文本图像二值化 被引量:2
2
作者 王红霞 何国昌 +1 位作者 李玉强 陈德山 《计算机工程》 CAS CSCD 北大核心 2022年第4期231-239,共9页
文本图像二值化是光学字符识别的关键步骤,但低质量文本图像背景噪声复杂,且图像全局上下文信息以及深层抽象信息难以获取,使得最终的二值化结果中文字区域分割不精确、文字的形状和轮廓等特征表达不足,从而导致二值化效果不佳。为此,... 文本图像二值化是光学字符识别的关键步骤,但低质量文本图像背景噪声复杂,且图像全局上下文信息以及深层抽象信息难以获取,使得最终的二值化结果中文字区域分割不精确、文字的形状和轮廓等特征表达不足,从而导致二值化效果不佳。为此,提出一种基于改进U-Net网络的低质量文本图像二值化方法。采用适合小数据集的分割网络U-Net作为骨干模型,选择预训练的VGG16作为U-Net的编码器以提升模型的特征提取能力。通过融合轻量级全局上下文块的U-Net瓶颈层实现特征图的全局上下文建模。在U-Net解码器的各上采样块中融合残差跳跃连接,以提升模型的特征还原能力。从上述编码器、瓶颈层和解码器3个方面分别对U-Net进行改进,从而实现更精确的文本图像二值化。在DIBCO 2016—2018数据集上的实验结果表明,相较Otsu、Sauvola等方法,该方法能够实现更好的去噪效果,其二值化结果中保留了更多的细节特征,文字的形状和轮廓更精确、清晰。 展开更多
关键词 文本图像二值化 U-Net网络 全局上下文 残差跳跃连接 DIBCO数据集
下载PDF
基于改进残差学习的东巴象形文字识别 被引量:1
3
作者 骆彦龙 毕晓君 +1 位作者 吴立成 李霞丽 《智能系统学报》 CSCD 北大核心 2022年第1期79-87,共9页
基于深度学习模型的东巴象形文字识别效果明显优于传统算法,但目前仍存在识别字数少、识别准确率低等问题。为此本文建立了包含1387个东巴象形文字、图片总量达到22万余张的数据集,大幅度增加了可识别字数,并辅助提高了东巴象形文字的... 基于深度学习模型的东巴象形文字识别效果明显优于传统算法,但目前仍存在识别字数少、识别准确率低等问题。为此本文建立了包含1387个东巴象形文字、图片总量达到22万余张的数据集,大幅度增加了可识别字数,并辅助提高了东巴象形文字的识别准确率。同时,本文根据东巴象形文字相似度高、手写随意性大的特点,选择ResNet模型作为改进的网络结构,设计了残差跳跃连接方式和卷积层的数量,并通过加入最大池化层实现了下采样的改进。实验结果表明,在本文建立的东巴象形文字数据集上,改进的ResNet模型实现了东巴象形文字识别字数多且识别准确率高的最好效果,识别准确率可达到98.65%。 展开更多
关键词 深度学习 东巴象形文字 图像识别 数据集建立 ResNet模型 残差跳跃连接 下采样改进 识别准确率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部