期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种残差卷积与多尺度特征融合的海岛多时相遥感影像变化检测方法 被引量:1
1
作者 管军 石爱业 +2 位作者 徐传杰 李景奇 胡锐 《现代电子技术》 2023年第14期7-10,共4页
为提高多时相遥感影像的海岛变化检测精度,文中采用编解码结构模型将变化检测中变和不变的二分类问题视为语义分割任务,提出一种残差卷积与多尺度特征融合的海岛多时相遥感影像变化检测方法(RMFNet)。首先,在编码器层构建4组优化的残差... 为提高多时相遥感影像的海岛变化检测精度,文中采用编解码结构模型将变化检测中变和不变的二分类问题视为语义分割任务,提出一种残差卷积与多尺度特征融合的海岛多时相遥感影像变化检测方法(RMFNet)。首先,在编码器层构建4组优化的残差卷积块(RC)用于提取特征信息,每组残差卷积块通过三重跳跃连接方式提高网络的泛化能力;其次,构建基于空洞空间金字塔池化的多尺度特征融合块(MFF),融合语义信息、全局上下文信息以充分学习海岛变化与未变化的特征;然后,使用损失函数指导残差卷积块和多尺度特征融合块的训练;最后,以中国香港岛为例,基于公开的变化检测OSCD数据集进行仿真实验。结果表明:提出的RMFNet方法的Kappa值比CNN、ResNet-18、PSPNet、SegNet、UNet五种方法分别提高0.2509、0.2019、0.1313、0.0786、0.0380,验证了该方法的有效性。 展开更多
关键词 多时相遥感影像 残差卷积 多尺度特征融合 特征信息提取 变化检测 损失函数
下载PDF
一种改进U-Net模型的建筑物变化信息提取研究
2
作者 凡建林 姚辉 高叶 《测绘与空间地理信息》 2024年第9期218-220,224,共4页
建筑物的变化信息提取是遥感影像提取的重要内容之一,对土地调查、城市规划、土地执法等具有重要意义。针对原始U-Net模型预测效果较差、存在漏检等问题,本文提出了一种融合聚合残差卷积块和注意力模块的改进U-Net模型。结果表明,改进后... 建筑物的变化信息提取是遥感影像提取的重要内容之一,对土地调查、城市规划、土地执法等具有重要意义。针对原始U-Net模型预测效果较差、存在漏检等问题,本文提出了一种融合聚合残差卷积块和注意力模块的改进U-Net模型。结果表明,改进后的U-Net模型在建筑物变化信息提取上相比原始的U-Net模型,精度有很大的提升,可为建筑物变化监测提供一定的技术支持。 展开更多
关键词 深度学习 建筑物提取 聚合残差卷积 注意力机制
下载PDF
基于可融合残差卷积块的深度神经网络模型层剪枝方法 被引量:1
3
作者 徐鹏涛 曹健 +3 位作者 孙文宇 李普 王源 张兴 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期801-807,共7页
针对当前主流的剪枝方法所获得的压缩模型推理时间较长和效果较差的问题,提出一种易用且性能优异的层剪枝方法。该方法将原始卷积层转化为可融合残差卷积块,然后通过稀疏化训练的方法实现层剪枝,得到一种具有工程易用性的层剪枝方法,兼... 针对当前主流的剪枝方法所获得的压缩模型推理时间较长和效果较差的问题,提出一种易用且性能优异的层剪枝方法。该方法将原始卷积层转化为可融合残差卷积块,然后通过稀疏化训练的方法实现层剪枝,得到一种具有工程易用性的层剪枝方法,兼具推理时间短和剪枝效果好的优点。实验结果表明,在图像分类任务和目标检测任务中,该方法可使模型在精度损失较小的情况下获得极高的压缩率,优于先进的卷积核剪枝方法。 展开更多
关键词 卷积神经网络 层剪枝 可融合残差卷积 稀疏化训练 图像分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部