期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度卷积神经网络的γ光子图像分类识别研究
被引量:
2
1
作者
吴蓉
赵敏
+2 位作者
孙通
徐君
姚敏
《机械制造与自动化》
2020年第5期139-141,共3页
通过对正电子探测成像技术获得的γ光子图像进行分类识别,有利于后续有针对性地快速获取图像所包含的有效信息。在MatConvNet上利用迁移学习的方法搭建深度卷积神经网络,通过对其参数的调整进一步提高网络分类识别的性能。为了验证网络...
通过对正电子探测成像技术获得的γ光子图像进行分类识别,有利于后续有针对性地快速获取图像所包含的有效信息。在MatConvNet上利用迁移学习的方法搭建深度卷积神经网络,通过对其参数的调整进一步提高网络分类识别的性能。为了验证网络性能,设计了10组不同形状的管材模型,利用仿真得到的扫描时间为1s的γ光子图像样本集对网络进行训练后,将其应用于扫描时间为0.1 s的γ光子图像样本进行分类识别,发现分类准确率在图像质量偏差、扫描时间为0.1 s的γ光子图像样本上仍然达到了94.72%。可见所搭建的深度卷积神经网络对γ光子图像具有很好的分类识别性能。
展开更多
关键词
正电子
探测
成像
技术
深度学习
卷积神经网络
分类识别
下载PDF
职称材料
题名
基于深度卷积神经网络的γ光子图像分类识别研究
被引量:
2
1
作者
吴蓉
赵敏
孙通
徐君
姚敏
机构
南京航空航天大学自动化学院
出处
《机械制造与自动化》
2020年第5期139-141,共3页
基金
国家自然科学基金面上项目(51875289,6187124)
航空科学基金项目(2016ZD52036)
+1 种基金
中央高校基本科研业务费专项资金项目(NS2019017)
江苏省研究生科研与实践创新计划项目(KYCX18_0269)。
文摘
通过对正电子探测成像技术获得的γ光子图像进行分类识别,有利于后续有针对性地快速获取图像所包含的有效信息。在MatConvNet上利用迁移学习的方法搭建深度卷积神经网络,通过对其参数的调整进一步提高网络分类识别的性能。为了验证网络性能,设计了10组不同形状的管材模型,利用仿真得到的扫描时间为1s的γ光子图像样本集对网络进行训练后,将其应用于扫描时间为0.1 s的γ光子图像样本进行分类识别,发现分类准确率在图像质量偏差、扫描时间为0.1 s的γ光子图像样本上仍然达到了94.72%。可见所搭建的深度卷积神经网络对γ光子图像具有很好的分类识别性能。
关键词
正电子
探测
成像
技术
深度学习
卷积神经网络
分类识别
Keywords
positron detection imaging technology
deep learning
convolutional neural network
classification and recognition
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度卷积神经网络的γ光子图像分类识别研究
吴蓉
赵敏
孙通
徐君
姚敏
《机械制造与自动化》
2020
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部