期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于正则化贪心森林的多维频率指标智能化预测方法 被引量:6
1
作者 黄明增 文云峰 +4 位作者 汪荣华 胥威汀 李婷 苟竞 赵荣臻 《电力建设》 北大核心 2020年第9期124-131,共8页
为实现海量预想故障下电力系统频率响应性能的快速和精确感知,文章提出了一种基于正则化贪心森林(regularized greedy forests,RGF)的多维频率指标智能化预测方法。该方法采用RGF建立特征输入与多维频率指标之间的非线性映射关系,通过... 为实现海量预想故障下电力系统频率响应性能的快速和精确感知,文章提出了一种基于正则化贪心森林(regularized greedy forests,RGF)的多维频率指标智能化预测方法。该方法采用RGF建立特征输入与多维频率指标之间的非线性映射关系,通过对全局参数进行优化,并引入3种正则化机制,使所构建的机器学习模型能够有效表征复杂函数,防止过拟合。为保证预测算法的性能,通过网格搜索遍历参数组合,以确定所构建RGF模型的最佳参数。在改进的IEEE RTS-79系统上开展了算例测试,与时域仿真、随机森林和梯度提升方法所得结果进行比较,验证了所提方法的准确性、快速性以及良好的泛化能力。 展开更多
关键词 频率 惯性 智能预测 正则贪心森林 网格搜索法
原文传递
基于正则化贪心森林算法的情感分析方法研究 被引量:1
2
作者 吴彤 张贯虹 陈婷婷 《合肥学院学报(综合版)》 2021年第5期109-114,共6页
针对微博评论数据的分布不平衡特点在传统机器学习方法决策树的基础上,提出一种新的解决方法,使用集成学习RGF算法对数据进行迭代训练,进而调整训练样本的权重,获得最优的结果。实验结果表明在不同语料库数据集下,本方法较其他模型在准... 针对微博评论数据的分布不平衡特点在传统机器学习方法决策树的基础上,提出一种新的解决方法,使用集成学习RGF算法对数据进行迭代训练,进而调整训练样本的权重,获得最优的结果。实验结果表明在不同语料库数据集下,本方法较其他模型在准确率、召回率和F1值上都取得了良好的表现,验证了本方法在微博非平衡短文本数据集中进行情感分析的有效性。 展开更多
关键词 决策树 集成学习 情感分析 正则贪心森林
下载PDF
基于最大信息系数和多目标Stacking集成学习的综合能源系统多元负荷预测 被引量:28
3
作者 崔树银 汪昕杰 《电力自动化设备》 EI CSCD 北大核心 2022年第5期32-39,81,共9页
精确的多元负荷预测对于综合能源系统的能源调度与运行规划起到重要的作用。对电、热、冷负荷单独进行预测的传统方法会忽略多元负荷间的耦合关系。针对这一问题,提出一种基于多目标Stacking集成学习的多元负荷协同预测模型。引入最大... 精确的多元负荷预测对于综合能源系统的能源调度与运行规划起到重要的作用。对电、热、冷负荷单独进行预测的传统方法会忽略多元负荷间的耦合关系。针对这一问题,提出一种基于多目标Stacking集成学习的多元负荷协同预测模型。引入最大信息系数对多元负荷及天气因素进行相关性分析,并提出负荷耦合形态指标来深度挖掘多元负荷间的耦合关系;将多目标回归与Stacking集成学习模型相结合,建立多元负荷协同预测模型;通过实际算例验证所提模型的有效性,算例结果表明,与其他预测模型相比,所提模型预测精度更高。 展开更多
关键词 多目标回归 Stacking集成学习 综合能源系统 最大信息系数 正则贪心森林算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部