期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种新的空谱联合高光谱图像分类方法 被引量:9
1
作者 曲海成 郭月 王媛媛 《测绘科学》 CSCD 北大核心 2019年第8期82-90,共9页
针对现有高光谱图像分类方法对空间和谱间信息的利用不充分,限制了地物分类的准确度的问题,该文提出一种基于正交线性判别分析和三维离散小波变换的高光谱图像空谱联合分类算法。该算法首先利用正交线判别分析对高光谱图像进行特征提取... 针对现有高光谱图像分类方法对空间和谱间信息的利用不充分,限制了地物分类的准确度的问题,该文提出一种基于正交线性判别分析和三维离散小波变换的高光谱图像空谱联合分类算法。该算法首先利用正交线判别分析对高光谱图像进行特征提取和特征缩减;然后将提取后的特征经三维离散小波从不同尺度、频率和方向上分解,以级联的方式获得具有正交类判别信息的空谱融合特征集;最后,将空谱融合特征集作为概率支持向量机的输入特征,分类的结果再通过马尔可夫随机场利用空间上下文信息细化分类图,进一步提升分类准确度。在Indian Pines和Salinas两组数据集上的实验表明,相比其他算法,该算法能达到更高的总体分类准确度和Kappa系数,并且在大部分的地物类别上的分类准确度有着较为明显地提升。 展开更多
关键词 正交线性判别分析 三维离散小波变换 马尔可夫随机场 分类
原文传递
基于正交线性判别分析和电子鼻技术的食醋分类 被引量:4
2
作者 武斌 王大智 +4 位作者 嵇港 黄大鹏 武小红 陈开兵 贾红雯 《食品与发酵工业》 CAS CSCD 北大核心 2020年第6期263-268,共6页
为了实现食醋品种的准确分类,探索应用电子鼻技术和两种特征提取方法进行食醋的检测和分类。先用自制电子鼻系统检测5个品种食醋的电子鼻信号,接着用标准正态变量变换进行数据预处理,然后分别用主成分分析(principal component analysis... 为了实现食醋品种的准确分类,探索应用电子鼻技术和两种特征提取方法进行食醋的检测和分类。先用自制电子鼻系统检测5个品种食醋的电子鼻信号,接着用标准正态变量变换进行数据预处理,然后分别用主成分分析(principal component analysis,PCA)+线性判别分析(linear discriminant analysis,LDA)和正交线性判别分析(orthogonal linear discriminant analysis,OLDA)对食醋电子鼻信号进行降维与特征提取,最后用最近邻分类器进行分类。实验表明,PCA+LDA的分类准确率最高达到90.32%,而OLDA的分类准确率最高达到91.52%。另外,PCA+LDA需要2次特征提取而OLDA只要1次。因此,OLDA在特征提取方面要优于PCA+LDA,基于OLDA和电子鼻技术的食醋品种分类方法是切实可行的。 展开更多
关键词 食醋 电子鼻 标准正态变量变换 正交线性判别分析 线性判别分析
下载PDF
基于正交线性判别分析的植物分类方法
3
作者 张善文 贾庆节 井荣枝 《安徽农业科学》 CAS 2012年第1期9-10,16,共3页
首先计算数据的类内和类间散度矩阵,得到差形式的目标函数;然后进行特征值分解,得到映射矩阵;最后利用实际植物叶片数据集进行植物分类试验。结果表明,该算法对植物分类是有效可行的。
关键词 流形学习 线性判别分析 正交线性判别分析 植物分类
下载PDF
用于人脸识别的正则正交化的局部判别分析
4
作者 杨晓梅 《计算机应用与软件》 CSCD 北大核心 2013年第5期33-35,75,共4页
非线性结构保持能力的不足是正则正交化的线性判别分析ROLDA(Regularized Orthogonal Linear Discriminant Analysis)在人脸识别中的主要问题。提出一个用于人脸识别的正则正交化的局部Fisher判别分析ROLFDA(Regularized Orthogonal Loc... 非线性结构保持能力的不足是正则正交化的线性判别分析ROLDA(Regularized Orthogonal Linear Discriminant Analysis)在人脸识别中的主要问题。提出一个用于人脸识别的正则正交化的局部Fisher判别分析ROLFDA(Regularized Orthogonal LocalFisher Discriminant Analysis)降维算法。该算法在ROLDA基础上引入局部结构保持,继承ROLDA的特性,克服了ROLDA的非线性能力的不足的问题。在YaleB和AR人脸数据集上的实验验证了该算法的有效性。 展开更多
关键词 人脸识别 降维 正则正交化的线性判别分析 局部结构保持
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部