OL S训练方法应用在径向基 (RBF )神经网络里时 ,存在当训练数据量很大时速度很慢的问题 ,并且 OL S方法不能自动确定基函数的平滑参数。本文针对此问题提出了一种基于快速模糊 C-均值算法 (A FCM)与 OL S算法相结合的 AF OL S训练算法 ...OL S训练方法应用在径向基 (RBF )神经网络里时 ,存在当训练数据量很大时速度很慢的问题 ,并且 OL S方法不能自动确定基函数的平滑参数。本文针对此问题提出了一种基于快速模糊 C-均值算法 (A FCM)与 OL S算法相结合的 AF OL S训练算法 ,该算法使用 AF CM方法对数据进行聚类 ,并获取基函数的平滑参数 ,然后使用 OL S方法从聚类结果中选取网络中心。利用实测的 4类飞机目标数据对其进行性能检验 ,试验结果验证了该训练算法可提高网络的训练速度 ,缩小网络规模 ,提高网络的分类能力。展开更多
本文将基于正交最小二乘的RBF神经网络算法引入自适应噪声对消中,提出一种基于最小二乘算法和径向基网络的自适应噪声抵消(adaptive filter based on least square algorithm and radial basis network,简称OLSRBFAF)算法。RBF网络因其...本文将基于正交最小二乘的RBF神经网络算法引入自适应噪声对消中,提出一种基于最小二乘算法和径向基网络的自适应噪声抵消(adaptive filter based on least square algorithm and radial basis network,简称OLSRBFAF)算法。RBF网络因其具有良好的推广能力,简单的结构和快速的训练过程等诸多优点已被成功应用于很多领域。RBF神经网络中关键因素是基函数中心的选取,中心选取不当构造出来的RBF网络的性能一般不能令人满意。利用正交最小二乘(orthogonal least squares,简称OLS)算法选取RBF网络中心,解决了径向基函数网络构造这一关键问题。并由于OLS算法中采用了最小二乘(least-square,简称LS)准则,其对时变信道具有快速跟踪的能力。利用MATLAB仿真结果分析可知,通过将两种算法结合引入自适应噪声抵消系统,使该系统具有误差更小,消除噪声能力更强的优点。展开更多
文摘OL S训练方法应用在径向基 (RBF )神经网络里时 ,存在当训练数据量很大时速度很慢的问题 ,并且 OL S方法不能自动确定基函数的平滑参数。本文针对此问题提出了一种基于快速模糊 C-均值算法 (A FCM)与 OL S算法相结合的 AF OL S训练算法 ,该算法使用 AF CM方法对数据进行聚类 ,并获取基函数的平滑参数 ,然后使用 OL S方法从聚类结果中选取网络中心。利用实测的 4类飞机目标数据对其进行性能检验 ,试验结果验证了该训练算法可提高网络的训练速度 ,缩小网络规模 ,提高网络的分类能力。
文摘本文将基于正交最小二乘的RBF神经网络算法引入自适应噪声对消中,提出一种基于最小二乘算法和径向基网络的自适应噪声抵消(adaptive filter based on least square algorithm and radial basis network,简称OLSRBFAF)算法。RBF网络因其具有良好的推广能力,简单的结构和快速的训练过程等诸多优点已被成功应用于很多领域。RBF神经网络中关键因素是基函数中心的选取,中心选取不当构造出来的RBF网络的性能一般不能令人满意。利用正交最小二乘(orthogonal least squares,简称OLS)算法选取RBF网络中心,解决了径向基函数网络构造这一关键问题。并由于OLS算法中采用了最小二乘(least-square,简称LS)准则,其对时变信道具有快速跟踪的能力。利用MATLAB仿真结果分析可知,通过将两种算法结合引入自适应噪声抵消系统,使该系统具有误差更小,消除噪声能力更强的优点。